






橡胶在工业上经常与钢或者其它金属结合在一起组成橡胶支座,这些支座在汽车、桥梁及建筑物上有着广泛的应用,网架橡胶支座,它可以吸收由于振动所带来的能量。橡胶支座的研制和开发已受到广泛的重视,但由于橡胶材料特性十分复杂,橡胶材料力学行为的理论研究非常困难,这在一定程度上影响了橡胶件产品的设计和应用。庆幸的是,随着计算机和有限元单元法技术的发展,多孔网架橡胶支座,人们已经有能力处理橡胶类材料的非线性问题。针对减振橡胶支座,本文主要进行了以下几方面的工作:典型橡胶钢试件的非线性有限元分析。对无初始裂纹和含初始裂纹的橡胶钢双剪切试件进行非线性有限元分析,了解试件刚度和界面应力的变化情况。橡胶钢双材料试件由于机械载荷和环境的影响经常在粘接界面发生***而导致结构失效,借助有限元和断裂力学对界面***机理进行研究,得到的存在初始裂纹的试件变形与实验结果吻合较好。根据有限元结果计算出不同裂纹深度、不同载荷下的撕裂能,分析了试件的撕裂能与裂纹深度与载荷的关系。橡胶-钢球支座的非线性有限元分析。针对橡胶的大变形及接近不可压缩的特点,对工程中常用的橡胶-刚球支座进行非线性有限元分析,了解了支座的刚度和应力的变化情况以及泊松比对两者的影响,得出的支座受轴向拉伸时的刚度与轴向变形关系。同时得出了支座受轴向拉伸时易失效位置。管状橡胶支座的非线性分析。利用ANSYS有限元分析软件对管状橡胶支座的轴向刚度和扭转刚度进行非线性分析。通过有限元软件选择合适的材料模型和单元用来后续分析。研究了管状橡胶支座受拉伸载荷和扭转载荷作用下的刚度,给出应变大小、形状因子等因素对支座刚度的影响。通过数据非线性回归得到轴向刚度和扭转刚度的经验公式,矩形网架橡胶支座,为实际支座的刚度设计提供了简便的计算方法。
四氟滑板橡胶支座就是在普通板式橡胶支座的表面粘复一层1.5mm-3mm厚的聚四氟乙烯板,就能制作成橡胶支座,又称之为:四氟滑板式支座(GJZF4、GYZF4系列)。除具有GYZ系列橡胶支座的所有功能外,聚四氟乙烯板(F4板)与梁底不锈钢板之间的低摩擦系数,使上部构造的水平位移,成品网架橡胶支,不受支座本身剪切变形量的限制,能满足一些桥梁的大位移量需要。该板式橡胶支座除具有球冠橡胶支座的功能外,还特别适用大位移量的桥梁。四氟板式橡胶支座不仅技术***、性能优良,还具有构造简单、价格低廉、无需养护易于更换缓冲隔震、建筑高度低等特点.因而在桥梁界颇受欢迎,被广泛使用。


网架作为一种空间结构,它是由许多杆件沿平面或曲面按一
定要求组成的高次超静定空间网状结构。其早在20世纪40年代就在德国首先成功运用于工业建筑上,此后在世界上得到蓬勃发展并形成了众多定型体系,如米罗体系、单杆体系、空间板体
系、菱形桁架体系、诺得斯体系等[1]
。我国于1964年将网架结构用于上海师范学院球类馆的屋盖上,其后网架结构在中国也得到迅猛发展。空间网架结构以其具有造型美观、重量轻、跨度大、现场施工周期短、可工业化生产等优点,被现代的大跨度工业厂房、候机楼、体育馆所接受。随着形式的多样化和跨度的增大,网架的稳定性和抗震分析逐渐成为重要问题。
文中以北京科技大学体育馆的屋顶网架结构为背景,采用ANSYS有限元分析软件,通过网架结构的三维建模,对整体结构的振动模态和震激励瞬态进行分析,所得结果对于验证原设计和指导设计修改有很大意义。

