bod5的试验方法严格遵循***废水水质分析标准试验方法。需氧微生物分解水中有机污染物所需的氧量称为生化需氧量(以mg/l为单位)。它反映了有氧条件下水中可生物降解有机物质的数量。生化需氧量越高,水中有氧有机物越多。好氧微生物降解有机污染物的过程可分为两个阶段:阶段是有机物转化为二氧化碳、水和氨的过程;第二阶段是氨转化为亚和的过程。污水的生化需氧量通常仅指阶段有机生物氧化所需的氧气量。
制药废水的处理方法有哪些?
制药废水的处理方法
***处理、化学处理、生化处理以及多种方法的组合处理等被广泛应用在制药废水的处理过程中,每种处理方法都具有各自的优势及不足。混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等被称为***处理方法;铁炭法、化学氧化还原法(Fenton***、H2O2、O3)、深度氧化技术等方法被称为化学处理方法;好氧生物法、厌氧生物法、好氧-厌氧组合方法是生化处理方法。
吸附处理法中主要吸附剂有树脂类、腐殖酸、矿山尾料等。制药厂家使用某吸附材料与生化工艺联合处理,并获得较好效果的案例屡见不鲜。
反渗透方法、纳滤或纤维膜法都可以归纳为膜分离法。这种方法可以有效控制有机物的排放指标同时对有机物质进行回收利用,不但对总量进行控制,还可以根据处理对象的大致成分,进行单一物质的去除,收效明显。设备操作不复杂、简便易掌握,不易发生化学变化,相比之下,对目标对象的处理能力强、能源消耗小。
若选择脱色效果好、便于操作的处理方法应该先选电解法。现阶段已有许多此类方法的研究成果,其脱色和降低废水指标的能力较高。对于高浓度制药废水需要预处理的情况,可以选用铁碳法,预处理可以逐渐增加出水的可生化性。当需要去除废水中难降解少量有机物时,建议选用芬顿法,这种方法可以对许多生化法无法去除的难降解物质进行有效控制。Fenton法的应用也渐渐扩展了催化剂的范围,由此处理效果也逐渐增强。氧化法成功的运用了声、光、电、磁等学科知识,创造性地拓展了此项技术,如光催化、超临界水氧化、超声处理法、电化学法等。
高含量有机废水治理环节常选择厌氧生物科技为重要治理手段
近几年,随着研究者持续改进厌氧生物科技,对于工业废水治理中厌氧生物科技的使用也逐渐成熟。比较常见的研究成果包括:AF、UASB和EGSB等技术。这类技术尽管相较过去来说有了明显进步,但依旧存在诸多尚待改进的地方。基于微生物与化学方面,厌氧治理仅仅是个预处理环节,其需要在做好水处理的基础上,清理残存的有机物质。所以,在高含量有机废水治理环节常常选择厌氧生物科技为重要治理手段。今后的工业废水治理方法也要以厌氧生物科技作为支撑,以好氧生物治理科技为其辅助手段。由此,在今后的发展阶段,相关人员能够考虑对如下几点展开研究。
1、因为相较于好氧生物治理方法来说,厌氧生物科技的能耗量较低、成本少,加上污泥量少、方便处理等优点,将会变成提高工业废水治理效率的重要途径。但是,因为厌氧物质针对***物质的高敏感度,产菌生产阶段将极易受到硫化物以及***的影响。所以,今后的研究过程,为增加其效用,必须将工业方面的其他废水治理方法和现行的技术相融合,以建立一个整体治理循环结构,比如:好氧-厌氧-湿池等。
2、因为受到环境和其它约束因素的限制,***采用厌氧生物方法治理工业废水的手段还未得到广泛应用。对厌氧出水的之后治理过程进行完善,将是处理这个问题的有效办法。比如,厌氧科技+酸化+好氧科技的应用,其可以在前半段清理大部分COD,后半段出水能够采用不同要求下的排出标准。