薄膜电容器与铝电容器的设计要点
当需要在两种技术中间进行选择时,性能并不是全部考虑因素,元件的尺寸也很重要,价格也是一个因素。要始终牢记的是薄膜电容器和铝电容器如何达到预期的效果?
铝电容器的空间效率肯定比薄膜电容器要高。一个470 μF/450 V铝电容器的体积只有一个470 μF/450 V薄膜电容器的15%。
另一方面,铝电容器的寿命有限,损耗更大。对于一个要求能工作20年或高功率等级的太阳能逆变器,薄膜电容器因其具有更低的损耗和寿命,是更佳的选择。
仅就元件成本而言,铝电容器占有优势,同样是470 μF/450 V,薄膜电容器的成本是相对应的铝电容器的5倍甚至更多。然而,铝电容器一般需要额外的保护电路。相反,薄膜电容器几乎不需要用来防止发生故障的外围元件。尤其是高功率等级的太阳能逆变器,能够处理发热问题的电容器是更佳选择,因为这样有助于大大降低成本,例如不需要用水来冷却元器件。
实验结果
对样机进行检测的结果如下:
(1)设定Vo=13.5V,VH=14.4V。当蓄电池电压低于13.5V时,充电管完全打开;高于14.4V时,充电管完全关断。在13.5V和14.4V之间为PWM充电方式,输出脉冲的宽度随蓄电池电压的升高而减小。
(2)设定=11.0V,VR=13.3V。电池电压处在11.0V和14.4V之间时,样机有稳定的直流或/和交流输出。当电压降低到11.0V以下时,MCU自动切断输出,同时“欠压”LED点亮。直到蓄电池电压***到l3.3V后,才可继续供电。
(3)蓄电池电压在11.0V~14.4V之间变化,旧组件回收,负载在0~100%之间变化时,逆变器的输出电压变动不大于额定输出电压的5%。
(4)过载在12O一150%范围内时,样机在60S后关机。在150~160%范围内时,样机在10s后关机。超过60%时,样机立即关机。
(5)短路发生后,样机会立即天机。
DSC为控制系统的太阳能并网逆变电源设计方案
因为DSP芯片是DSC关键部件,因此太阳能并网逆变电源设计方案都是基于DSP技术的设计方案。恰逢以TMS320C2000TMDSP为典型性运用作剖析。由于以TMS320C2000TMDSP的平台可以好地回应太阳能逆变电源好几条执行线路的即时考验。所以就让TMS320C2000TMDSP为典型性运用作剖析。该TMS320028xTM,关键32位CPU以150MHz的大工作频率运作,可以有效地实行在至大功率点一下控制面板所需要的高精密优化算法,可保证很高电源转换效率好,而且在严苛与随时变化条件下亦是如此。DC/AC转化器引桥的驱动程序由TMS320C2000元器件高度灵活的PWM控制模块实行及与片高速12位ADC配合使用,调整所需要的电流与电压,从而获得常见正弦波形。图3(b)会用TMS320C2000DSP为控制系统的太阳能并网逆变电源设计方案提示框架图。太阳能并网逆变电源设计方案由控制系统和输出功率主电路两部分组成。
襄樊旧组件回收信息推荐-振鑫焱光伏科技由苏州振鑫焱光伏科技有限公司提供。行路致远,砥砺前行。苏州振鑫焱光伏科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为太阳能及再生能源具有竞争力的企业,与您一起飞跃,共同成功!