1.1缺陷的定义
当前对于缺陷有两种认知的方式,种是有监督的方法,也就是体现在利用标记了标签(包括类别、矩形框
或逐像素等)的缺陷图像输入到网络中进行训练.此时"缺陷意味着标记过的区域或者图像。第二种是无监督的
方法,就是将正常无缺陷的样本进行学习,学习正常区域的特征,网络检测异常的区域。
缺陷检测的任务大致分为三个阶段分别是缺陷分类、缺陷***、缺陷分割,如下图所示,缺陷分类需要分类出
缺陷的类别(色、空洞、经线) ; 缺陷***不仅需要获取缺陷的类别还需要标注出缺陷的位置; 缺陷分割将
缺陷逐像素从背景中分割出来。
因为手机镜头的端面区域和凸台区域存在一定的高度差,现有技术中需要拍摄两张图像并进行两次算法检测,导致检测速度慢、cpu负载高。而本发明的端面和凸台检测方法有效地解决了这一问题,具体来说,根据本发明的一种实施方式,本发明的端面和凸台检测方法需要对端面和凸台按照如下公式的模板匹配获得r(x,y)值时得到两组值(x1,瑕疵检测设备,y1,phi1;x2,瑕疵检测系统,y2,phi2)分别代表***的x坐标、y坐标和角度:
之后对凸台图片进行仿射变换后与端面图片对齐,
根据本发明的一个方面,在所述步骤s24中:
将同一位置处的缺陷筛选出来后,利用设定大小的矩形核膨胀得到比实际缺陷略大的roi区域,江苏瑕疵检测,提炼出所述roi区域大小的原图;
根据公式:c=∑δδ(i,j)2pδ(i,j)计算出所述roi区域图像的对比度,筛选出同一位置处对比度缺陷作为表现清晰的缺陷;
其中δ(i,非标产品瑕疵检测,j)=|i-j|表示相邻像素间灰度差,pδ(i,j)表示相邻像素间的灰度差值为δ的像素分布概率。
瑕疵检测系统-宣雄(在线咨询)-江苏瑕疵检测由苏州宣雄智能科技有限公司提供。苏州宣雄智能科技有限公司是江苏 苏州 ,检测仪的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在宣雄***携全体员工热情欢迎各界人士垂询洽谈,共创宣雄更加美好的未来。