PCL框架包括很多***的算法和典型的数据结构,如滤波、分割、配准、识别、追zong、可视化、模型拟合、表面重建等诸多功能。在算法方面,PCL是一套包括数据滤波、点云配准、表面生成、图像分割和***搜索等一系列处理点云数据的算法。例如PCL中实现管道运算的接口流程:
①创建处理对象,三维数据服务,例如滤波、特征估计、图像分割等;
②通过setInputCloud输入初始点云数据,进入处理模块;
③设置算法相关参数;
④调用不同功能的函数实现运算,并输出结果。
说三维重建首先要从计算机视觉讲起。计算机视觉包含两个基本方向,物体识别和三维重建。图像识别的突破性进展源自于2012年卷积***网络(CNN)的兴起。在此之前,计算机视觉的核1心研究方向是三维重建。因为在当时,对于图像的特征提取主要是通过三维重建的方法来定义和实现的。自2012年以来,实景三维建模,图像的特征便逐渐由***网络来自动学习。
三维重建的应用是很广泛的,对于自动驾驶、VR、AR等应用领域应用来讲,三维重建是核1心技术,并且实时三维重建是必然趋势,因为我们生活在三维空间里,必须将虚拟世界***到三维,实景三维技术,我们才可以和环境进行交互。
libpcl filters:如采样、去除离群点、特征提取、拟合估计等数据实现过滤器;
libpcl features:实现多种三维特征,如曲面法线、曲率、边界点估计、矩不变量、主曲率,PFH和FPFH特征,旋转图像、积分图像,NARF描述子,实景三维,RIFT,相对标准偏差,数据强度的筛选等等;
libpcl I/O:实现数据的输入和输出操作,例如点云数据文件(PCD)的读写;
libpcl segmentation:实现聚类提取,如通过采样一致性方法对一系列参数模型(如平面、柱面、球面、直线等)进行模型拟合点云分割提取,提取多边形棱镜内部点云等等;
libpcl surface:实现表面重建技术,如网格重建、凸包重建、移动***小二乘法平滑等;
libpcl register:实现点云配准方法,如ICP等;
libpclkeypoints:实现不同的关键点的提取方法,这可以用来作为预处理步骤,决定在哪儿提取特征描述符;
libpcl range :实现支持不同点云数据集生成的范围图像。
三维数据服务-大势智慧(在线咨询)-实景三维由武汉大势智慧科技有限公司提供。武汉大势智慧科技有限公司是从事“实景三维重建软硬件产品及技术服务”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:吴先生。