




多轴联动数控系统 的精度主要从单个伺服 轴的运动控制精度和联 动轴耦合轮廓精度 2 方 面来评价。对于单个伺服轴的运动 控制,当要求的运动精度达到纳米级 时,传统的超精密机床传动方式在 低速、微动状态下表现出强非线性特 性,常规的运动控制策略已经很难保 证伺服系统实现理想的纳米级随动 精度。在这种情况下,等离子体激元能够从激光吸收更多的能量,并且反射较少的光。
此外,多轴联动系统的轮廓误差 由各伺服轴的运动误差耦合得到, 耦 合误差的建模及各轴相应的补偿控制量的计算都需要大量的齐次坐标 变换运算,这为实际的多轴联动耦合 控制器的设计带来了很大的不便。 智能控制理论与方法将可能为此问 题提供理想的解决方法。此外,要实 现多轴联动纳米级轮廓控制精度, 还 有一个不可忽视的问题,即联动轴的 同步问题。同步精度的高低直接影 响到系统的轮廓跟踪精度。严格意 义上的多轴伺服系统同步涉及到复 杂的数控和伺服系统接口规范的制 定。目前,在可以实现亚微米级加工 的高ji多轴联动超精密数控机床研 制方面,我国尚未取得突破性进展。现在,IBM使用硅技术开创了一个可以针对“外来体”的纳米级DLD过程,证明DLD可以用户过滤20-110纳米之间的物体。 至于可实现大型复杂曲面,特别是自 由曲面的纳米级超精密加工的五轴 联动机床,至今仍是一个世界上尚未 解决的难题。
光电所在纳米级高精度测量系统方法研究中取得新进展
公司在2015年成为科技型中小企业,并设立了院士工作站,目前主要开发和经营以下3类产品和服务:旋转机械状态监测和健康管理、光电视觉及环保检测、高精度几何量检测。相关技术打破国外垄断,技术水平达到国外同类产品的***水平。
美国***标准与技术研究院(NIST)的科学家们开发了一种新的装置,可以测量超微粒子的运动,这些超微粒子的运动距离小得不可想象,比氢原子的直径还小,或者说比一个人的头发丝的百万分之一还小。这种手持设备可以以***的精度探测微小零部件的原子级运动,而且,研究人员还找到了这种高灵敏度测量工具的量产方法。同时,当纳米颗粒移动时,它会改变间隙的宽度,并且还会像调谐吉他弦一样,改变等离子体激发共振的频率。
测量大型物体的小运动是比较容易的,但是当移动部件的尺寸为纳米级时,难度就会加大。精准测量微观物体的微小位移的能力,可用于检测微量的***生物或化学***,完善微型机器人的运动,精准部署气囊,以及检测通过薄膜传播的极弱声波。
科学院科技战略咨询研究院与***纳米科学中心联合发布《纳米研究前沿分析报告》。报告采用内容分析、文献计量和领域分析相结合的方法,通过对比分析美国、英国、法国、德国、俄罗斯、欧盟、日本、韩国、印度、澳大利亚以及我国的纳米技术研发计划,发现各国对纳米技术的信心普遍增强,***力度普遍加大,科研人员数量和相关企业数均大幅增加;将纳米技术列入促进经济社会发展和解决重大问题的关键技术领域,在能源和生物等领域尤其受到重视;纳米技术研究迈向新阶段,由单一的纳米材料制备和功能调控转向纳米技术的应用和商业化;公司在2015年成为科技型中小企业,并设立了院士工作站,目前主要开发和经营以下3类产品和服务:旋转机械状态监测和健康管理、光电视觉及环保检测、高精度几何量检测。通过公共研发平台、产业园区等方式,促进产学研合作及与其他领域的融合,缩短从前沿研究到产业化的时间;开展EHS(环境、健康、安全)和ELSI(限制、社会课题)研究以及国际标准和规范(ISO、IEC)的制定;重视纳米技术的基础教育和高等教育。报告显示,我国在纳米科技领域已形成一批达到世界领跑水平的优势研究方向和团队。