●对入口SO2浓度变化的适应性强。
●脱硫效率高,可达90%。
●脱硫副产物为干态,易处理;无污水排放及二次污染。
●系统阻力较小,运行费用较低,长期运行经济性好。
●占地面积小,系统简单、可靠,易于控制。
● 的流化床反应塔设计提供了温度、湿度、浓度、流场等的脱硫反应环境和优化的气/固速度配比,保证了 的传热,传质效果。
●吸收剂在塔内悬浮流化,且表面不断 新,脱硫剂利用率高, 降低Ca/S比,减少脱硫剂消耗。
●通过喷水控制塔内反应温度,同时对塔内的吸收剂二次增湿活化,同时可根据烟气量、烟气温度及含湿量的不同,设置多层喷水,且各层喷水层可单独调节,从而保证反应塔内截面温度场均匀。
●设有烟气再循环系统,可 适应锅炉负荷变化,保证塔内良好的流化床效果。

操作和管理不到位。操作中脱硫液温度过高,一般温度控制在38-42℃为宜,超过45℃则气泡易碎,单质硫浮选不好。操作温度大于50℃则副盐生成大量增多。一般副盐三项(Na2S2O3、Na2SO4和NaCNS)之总和应小于250g/L,特别是溶液中Na2SO4的含量一般不超过40g╱L为宜。当副盐增加时,要及时采取措施(排放或引出部分脱硫液使其降温析出结晶)。否则脱硫液中过多的副盐在塔内易析出结晶,粘附在填料上,时间一长,就形成盐堵。发生盐堵后,不仅使塔阻力上升,而重要的是会引起设备严重腐蚀。脱硫塔发生盐堵后,再好的催化剂也是无能为力的,氧化再生槽浮选出的硫泡沫不能及时溢流出去,而在液面上停留时间过长,硫泡沫破碎后,其表面粘附的单质硫下沉进入贫液,造成贫液悬浮硫上升。而由脱硫泵带至塔内,沉积在填料上,时间久了就会形成硫堵;溶液循环量不能保证相对稳定,调节过频,造成系统波动较大。当遇到系统减量时,溶液循环量应保持稳定,可从溶液组份上来作些调整。当遇到系统大幅度减量时间较长时,溶液循环量可仍保持稳定运行3-4小时,以使塔内填料上沉积的硫得到冲刷;再生槽吹风强度在经过操作摸索后,可稳定在量,一般不宜作过多调节。否则会影响单质硫的浮选,导致再生效果不佳;硫回收的熔硫残液,在变成低温处理时不达标,液温高、杂质多,影响吸收与再生效果,造成贫液质量差,悬浮硫含量高。熔硫残液在回收前要沉降冷却至≤45℃,使熔硫残液中的大量副盐结晶析出在沉降冷却池,清夜再返回系统循环使用。

脱硫系统中常见的主要设备为吸收塔、烟道、烟囱、脱硫泵、增压风机等主要设备,美嘉华技术在脱硫泵、吸收塔、烟道、烟囱等部位的防腐蚀、防磨效果显著,现分别叙述。吸收塔、烟囱中的应用湿法烟气脱硫环保技术(FGD)因其脱硫率高、煤质适用面宽、工艺技术成熟、稳定运转周期长、负荷变动影响小、烟气处理能力大等特点,被广泛地应用于各大、中型火电厂,成为国内外火电厂烟气脱硫的主导工艺技术。但该工艺同时具有介质腐蚀性强、处理烟气温度高、SO2吸收液固体含量大、磨损性强、设备防腐蚀区域大、防腐蚀失效维修难等特点。因此,该装置的腐蚀控制一直是影响装置长周期安全运行的***问题之一。