微纳米气泡的特性 自身增压溶解
水中的气泡四周存有气液界面,而气液界面的存在使得气泡会受到水的表面张力的作用。对于具有球形界面的气泡,表面张力能压缩气泡内的气体,从而使更多的气泡内的气体溶解到水中。
根据杨-拉普拉斯方程, ?P=2σ/r,?P代表压力上升的数值,σ代表表面张力,r代表气泡半径。直径在0.1mm以上的气泡所受压力很小可以忽略,而直径10μm的微小气泡 会受到0.3个大气压的压力,而直径1μm的气泡会受高达3个大气压的压力。微纳米气泡在水中的溶解是一个气泡逐渐缩小的过程,压力的上升会增加气体的溶解速度,伴随着比表面积的增加,气泡缩小的速度会变的越来越快,从而***终溶解到水中,理论上气泡即将消失时的所受压力为无限大。
气体溶解率高
微纳米气泡具有上升速度慢、自身增压溶解的特点,使得微纳米气泡在缓慢的上升过程中逐步缩小成纳米级,***后消减湮灭溶入水中,从而能够大大提高气体(空气、氧气、臭氧、二氧化碳等)在水中的溶解度。对于普通气泡,气体的溶解度往往受环境压力的影响和限制存在饱和溶解度。在标准环境下,气体的溶解度很难达到饱和溶解度以上。而微纳米气泡由于其内部的压力高于环境压力,使得以大气压为假定条件计算的气体过饱和溶解条件得以打破。
微纳米气泡的应用
微纳米气泡具有气泡尺寸小、比表面积大、吸附效率高、在水中上升速度慢等特点。在水中通入微纳米气泡,可有效分离水中的固体杂质、快速提高水体氧浓度、杀灭水中***病菌、降低固液界面摩擦系数,从而在气浮净水技术、水体增氧、臭氧水消毒和微纳气泡减阻等领域中应用比宏观气泡有更高的效率,应用前景也更为广阔。而在生物制药、精密化学反应、气泡逻辑电路等前沿应用领域,需要对单个气泡进行高精度操作控制,实现微气泡的吸附水平、溶解速度等参数定量化