图 6.L 拓扑结构为自由空间、手部和头部配置提供理想的阻抗匹配。电感器
L2 分别为 1.4nH、3.4nH 和¥(开路)。
然而,在这种情况下,我们可以使用可变分流电容在输入中找到可调谐电路,手机天线后处理,如图 7 所示,它为所有配置提供了基本上的阻抗匹配。该解决方案采用混合阻抗-孔径调谐器技术,总效率比物理极限仅降低不到
0.1 dB。本研究中的效率降低基本上是在配置和频带的坏情况下测得的。
多频段操作
后,让我们考虑一下手机支持北斗 B1-2 和 3GPP 频段 1 的应用。有几种可能的情况和解决方案架构。可能需要同时支持这些频段,或者一次支持一个频段。我们可以采用闭环调谐、开环(频率)调谐、两者的组合、孔径和/或阻抗调谐或全无源匹配。为了限制讨论范围,我们只考虑一次支持一个频段的情况,并研究不同的调谐选项。我们上面发现的物理性能限制显然也适用于要求更高的多频段应用。
射频设计自动化软件平台支持组合开环和闭环阻抗-孔径调谐器架构的优化,其中输入匹配电路和孔径端口处的调谐器组件适应环境和所服务的频带。对这样的理论电路合成和优化后的结果是能够达到所有配置和频带相对于物理极限的
-1.0dB 或更好的性能。我们将此性能用作其他匹配体系结构的参考。理论电路如图 11 所示,其中可变组件使用理想开关建模以方便说明。
频段 1 的情况挑战性更强,因为它的带宽要宽得多。仔细观察图 5(a) 中的性能图可以发现,对于自由空间配置,5 nH 的孔径组件值将提供阻抗带宽
(240 Mhz),但相应的辐射效率非常低 (30-35%)。另一方面,1 nH 孔径电感器将提供更好的辐射效率 (45-51%),但阻抗带宽更窄 (205
MHz)。预期值在 1nH 和 5nH 之间。类似地,对于手部配置,1nH 到 5nH 之间的所有孔径组件都有足够的可用带宽,并且频段上的辐射效率也落在这些值之间。对于头部配置,阻抗带宽不是瓶颈,孔径电感值接近
5 nH 时可实现。