所有电容都是由RLC电路组成,L是与引脚长度和结构相关的电感,R是引脚电阻,C为电容。串连的L和C会在某个频点谐振,而该频率点可以通过计算给出。谐振时电容的阻抗极低,能有效分流射频能量。频率高于电容的自谐振点时,电容就表现出电感的特性,并且感抗值随着频率的升高而变大,旁路和退耦的功能相应减弱。因此旁路和退耦的性能好坏很大程度取决于电容(表贴形式,插装形式)引脚的电感,电容与元件间的引线电感及连接焊盘(或过孔)的电感
————————————————
在差分电路设计中, 可以将两个 T-coils 与其他差分网络连接。 例如下图中, 利用交叉耦
合对实现的负电容设计网络, 其输出和 2 个负载电容并联。对于这种情况可以按照差分形式
分别接 2 个 T-coils 进行带宽提升。
在时间响应上, 为了避免明显的过程问题, 常常选择 CN=CB/4。
虽然 T-coil 慢慢替代以往 inductive peaking 技术, 来提升电路带宽(比如 IO 接口)。但
理想的 T-coil有自身电路缺陷和应用局限性。本节讨论几种优化方案来改进 T-coil的实用性,VCO常见问题,
并给出一些电路结构来进一步提升电路带宽(和理想 T-coil 比较)。
1) 屏蔽层电流分布检查:对于接地屏蔽层(PGS),为保证良好的电感值及品质因数,设计者需避免电流回路,毫米波芯片电磁场软件提供了可视化的电流分布检查功能;
2) *P-processing(边界条件后处理):可以通过变换边界条件来查看后处理结果,例如感值,Q值等。用户可根据不同的端口配置以及新的Nport数据,生成相对应的EM可视化数据;
3) 结果在用户界面生成曲线图,用户可以查看系统自带公式的Q值,感值,阻值等,也可以自己编辑公式查看自定义公式的曲线图;