





浪涌电流是必备的测试条件
在某些情况下,所使用的交流电源可能不能够提供负载所需的全部浪涌电流。如果测试不是必须在这么高浪涌电流的条件下进行测试,交流电源可以使用输出电压钳位来限制输出电流进行测试。但是需要注意的是类似整流器电源类型的负载,交流电源使用输出电压钳位来限制输出电流将会导致被测设备的启动时间更长;如果交流电源处于输出限流状态时不能够提供适当水平的电压和电流,将会导致被测设备无法正常启动或完全关闭。因此当浪涌电流是必备的测试条件时,那么必须选择一个能够提供全峰值浪涌电流的交流电源,这样交流电源就不会存在输出电流限制。在过压瞬变的情况下,如图2所示的中性损失事件,2Pro器件中的PPTC元件就会发热、跳脱并进入一种高阻抗状态,从而帮助降低MOV器件失效的风险。
电网电压波动输出可编程交流电源
电网电压波动输出
可编程交流电源集成List、Step、线路等功能,可直接设置电气参数(如电压、相位、频率、时间等),精准模拟输出突升突降、中断等多种类型电压,为电子设备性能和功能的验证提供多种类型的电源输入。与此同时,对于复杂不易编辑的电压,可将波形文件导入交流电源,交流电源能完整还原输出,尤其适合于户外光伏逆变器、通讯UPS等产品验证测试。有效控制电子设备启动浪涌电流不仅有利于提高电子设备使用寿命,而且能降低对周围的电子设备干扰影响,量测和改善电子设备启动浪涌电流是电子设备研发和验证过程中不可或缺的环节。
交流信号频率的调节是通过改变点与点之间输出时间间隔Δt来实现,信号频率与Δt的关系如下:
式中,f为输出信号频率,N为每周波拟合点数(本系统设计N为1 440)。若输出信号f=50 Hz,则Δt为1/72 000 s,由于STM32F103ZET6工作频率在72 MHz,所以只需将触发DAC输出的定时器自动重装载寄存器周期的值设置为999即可。此外,我们还提供了上位机控制软件PWRController控制软件交流变频电源对进行实时控制,使得用户的操作更加简便、实用。
定时时间值计算公式为:
输出两路交流信号之间相位差的调节则根据波形拟合点数据数组,选择不同的起始位置触发来实现。设两路输出分别为A和B,存放波形拟合点的数组为DATA[2N],N为每周波拟合点数,本系统为1440。若A、B两路触发起始位置分别为DATA[n1]、DATA[n2],当n1=n2时,A路与B路的相位差为0°;经测试,应用此方案设计的可编程交流电源,其频率与相位的分辨率显著提高,方便叠加各次谐波,且输出波形质量明显得到改善。当n1=0,n2=360时相位关系为A路超前B路90°。相位分辨率为360/1440=0.25°, A与B的相位差关系为:
式(5)中,若n1gt;n2,则A路超前B路Ph度;若n1=n2,则同相位;若n1lt;n2,则A路滞后B路Ph度。
幅值的调节由式(1)可知,可通过改变输入DAC寄存器DAC_DHRx中DOR的值实现,即对波形拟合点数组中的数据乘以一个系数α,为V=α×DATA[2N],其中V为输出信号的幅值。