






本文列举了烘干机配套风机静音扇叶,说明了S1流面优化设计在风机详细设计过程中的作用。根系顶部三个横截面的流入条件不同,如表3所示。根部设计点的进口气流角较大,烘干机配套风机工作范围不同于其它两段。由于转子叶片泄漏流的影响,顶部马赫数较小,工作范围较大。采用多岛遗传算法进行优化,种群44,孤岛7,代数7。三个截面共优化了22个叶片型线参数,包括较大厚度位置、安装角度、中弧控制点、吸入面控制点等。当优化后的叶片型线三维叠加时,烘干机配套风机叶片上半部分略微向后弯曲,可能导致优化后的定子叶片损失增加。将优化后的静叶***到级环境中,得到了三维数值模拟结果。在设计点流量下,静叶吸力面边界层变薄,堵塞面积减小。计算了级间环境下两叶型风机特性线和两定子叶片变攻角特性线。从图17可以看出,定子叶片损失减小,裕度增大,这与不同截面的S1流面性能分析结果相似。但由于烘干机配套风机气流角的匹配问题,级效率没有明显提高,之间失速裕度由27.1%提高到34.9%。叶片吸力前缘中部涡度强度略有增加,沿弦长方向吸力面中部和后部涡度强度基本不变。针对叶片高度方向的不均匀进口流动情况,在详细设计中采用了端部弯曲技术来匹配定、转子叶片之间的流动角。
在烘干机配套风机机械中,为了防止旋转叶片和固定壳体之间的摩擦,叶片顶部和壳体之间必须有一定的间隙。由于叶尖间隙的存在,不可避免地会发生泄漏流。泄漏流与主流相互作用形成的泄漏涡将影响涡轮机械的内部流场和气动性能,尤其是效率、烘干机配套风机噪声和稳定的工作范围。因此,通过改变叶顶间隙形状,对叶顶泄漏流进行综合分析,提高涡轮机械的气动性能具有重要的现实意义和工程参考价值。目前,对叶尖间隙进行了一系列的实验和数值模拟研究,主要集中在叶尖和壳体两个方面。对于叶片顶部,Young等人[4]采用实验方法研究了单槽、双槽和上斜面对涡轮性能的影响。在此基础上,模拟了烘干机配套风机、类型和位置对轴流风机性能的影响,指出在设计流量下,叶顶双槽结构具有较佳的气动性能,风机效率提高了1.05个百分点。对多级压缩机表明,叶根倒角还可以减小角区的失速,提高工作范围。目前,对叶尖间隙进行了一系列的实验和数值模拟研究,主要集中在叶尖和壳体两个方面。烘干机配套风机带肩端间隙涡轮的研究表明,压力侧和吸入侧后缘槽都可以略微增大叶片顶面传热系数,但吸入侧后缘槽可以减小间隙的泄漏损失。
烘干机配套风机四种不同结构尺寸的半圆形轴缝。模拟和试验结果表明,轴向缝处理技术不仅能达到稳定膨胀效果,而且能在设计速度下提率和压力比。套管壁环对简单烘干机配套风机性能的影响。结果表明,环形结构能有效地削弱叶顶间隙涡,甚至***其产生,有效地提高了风机的总压和效率。全冠、部分冠和加强型部分冠对烘干机配套风机气动性能的影响。结果表明,部分冠形能削弱泄漏流和二次流的强度,与全冠形相比,部分冠形的效率提高了0.6%。Satish Koyyalamudi和Nagpurwala[17]对离心式压缩机的导叶进行了处理。结果表明,改进后的压气机峰值效率降低了0.8%~1%,失速裕度提高了18%,阻塞流量提高了9.5%。叶顶间隙形态的研究主要集中在离心式、轴流式压缩机和涡轮上,而叶顶间隙形态对轴流风机特别是动叶可调轴流风机性能影响的研究相对较少。考虑到优化叶顶间隙形状可以有效地提高风机的性能,对OB-84动叶可调轴流风机在均匀间隙、逐渐收缩和逐渐膨胀等六种非均匀间隙下的性能进行了三维数值模拟。比较了不同叶尖间隙形状下的内部流动特性、总压分布和叶轮作用力,分析了渐缩型和渐扩型。通过在烘干机配套风机叶尖压力面附近扩展合适的叶尖平台,可以有效地减小叶尖泄漏和气动损失。间隙对风机性能影响的内在机理。