




测量金属屏蔽层电阻和导体电阻可以监视其受腐蚀变化情况,测量电阻比可以消除温度对直流电阻测量的影响。
5.2试验周期
交接试验
5.3试验方法
用双臂电桥测量在相同温度下的金属屏蔽层和导体的直流电阻
5.4试验判断
与投运前的测量数据相比较不应有较大的变化。当前者与后者之比与投运前相比增加时,表明屏蔽层的直流电阻增大,铜屏蔽层有可能被腐蚀;当该比值与投运前相比减少时,表明附件中的导体连接点的接触电阻有增大的可能。
6. 交叉互联系统试验
6.1交叉互联系统示意图
6.2交叉互联效果及构成
相比不交叉互联,金属护层流过的电流大大降低。
非接地端金属护层上蕞高鳡应电压为蕞长长度那一段电缆金属护层上鳡应的电压。
交叉互联必须断开金属护层,断口间与对地均需绝缘良好,一般采用互联箱进行电缆金属护层的交叉互联。
接地端金属护层通过同轴电缆引入直接接地箱接地;非接地端金属护层通过同轴电缆引入交叉互联接地箱,箱内装有护层过电压保护器限制可能出现的过电压。
保护接地箱
直接接地箱
交叉互联箱
6.3交叉互联性能检验
电缆外护套、绝缘接头外护套与绝缘夹板的直流耐压试验
试验时必须将护层过电压保护器断开,在互联箱中将另一侧的三段电缆金属套都接地,使绝缘接头的绝缘环也能结合在一起进行试验。
非线性电阻型护层过电压保护器试验
以下两项均为交接试验项目,预防性试验选做其中一个。
伏安特性或参考电压,应符合制造厂的规定。
带电测试外护套的接地电流:用钳形电流表测试,单回路敷设电缆线路,一般不大于电缆负荷的10%;多回路敷设电缆线路,应注意外护套接地电流的变化趋势,如有异常变化,应查明原因。发现问题应上报设备部和试研院。
相关专题
________________________________________
电力电缆及电缆附件基本知识
高压单芯电缆护层过电压保护原理、接地及保护方式
图解高压交联聚乙烯绝缘电缆及电缆附件
同轴接地电缆(同轴电缆)
高压单芯电力电缆线路的回流线作用及选择要求
110kV整体预制式绝缘(直通)接头安装工艺图文详解
110kV交联聚乙烯绝缘电力电缆整体预制式户外终端安装工艺图文详解
35kV单芯交联电缆冷缩式终端(户内、外)安装工艺图文详解
35kV三芯交联电缆冷缩式终端(户内、外)安装工艺图文详解
10kV单芯交联电缆冷缩式终端(户内、外)安装工艺图文详解
10kV三芯交联电缆冷缩式终端(户内、外)安装工艺图文详解
直埋敷设工程
1.1直埋电缆沟槽开挖
工艺标准
通过收资,了解电缆所经地区的管线或障碍物的情况,并在适当位置进行样沟的开挖,开挖深度应大于电缆埋设深度。
按电缆路径开挖沟槽,应满足以下要求:
自地面至电缆上面外皮的距离,不小于0.7m,35kV及以上为1m。
穿越道路和农地时分别为1m和1.2m。
穿越城市交通道路和铁路路轨时,应满足设计规范要求并采取保护措施。
在寒冷地区施工,开挖深度还应满足电缆敷设于冻土层之下,或采取穿管等特殊措施。
施工要点
挠性固定电缆用的夹具、扎带、捆绳或支托架等部件,应具有表面光滑、便于安装、足够的机械强度和适合使用环境的耐久性特点。
电缆敷设在工井的排管出口处可作挠性固定。
竖井内的大截面电缆可借助夹具作蛇形敷设,并在竖井顶端作悬挂式,以吸收由热机械力带来的变形。
市政桥梁敷设的电缆优先选用铝护套,以降低桥梁振动对电缆金属护套造成的疲劳应变,敷设方式可参照排管或隧道,需要注意的是,在考虑电缆热伸缩的同时,还需考虑桥梁的伸缩,在桥梁伸缩缝处、上下桥梁处必须采取挠性固定,或选用能使电缆伸缩自如的排架(伸缩弧)。交流单芯电缆的刚性固定,宜采用铝合金等不构成磁性闭合回路的夹具。
电缆蛇形敷设的每一节距部位,宜采用挠性固定,以吸收由热机械力带来的变形。每3~5m可采用具有一定承载力的尼龙绳索或扎带绑扎固定电缆,绑扎数量需经过核算和验证。
挠性固定方式其夹具的间距在垂直敷设时,取决于由于电缆自重下垂所形成的不均匀弯曲度,一般采用的间距为3~6m。当为水平敷设时,夹具的间距可以适当放大。
不得采用磁性材料金属丝直接捆扎电缆。


结构: 预制全干式六氟化硫电缆开关终端.
可先将绝缘筒装在GIS开关上.
适用电缆: PE, XLPE和 EPR绝缘,挤出外屏蔽层, 铜丝金属屏蔽/铅护套/铝护套电缆
基本设计: -全干式IEC 60859
-环氧树脂绝缘筒, 标准长度
-与环氧绝缘筒紧密配合的硅橡胶应力锥
-与导体插头式或插座式连接
-应力锥压力环和顶推装置保证足够压力
-支撑套筒和电缆夹提供机械保护
产品特点: -完善的质量保证体系,确保每个产品出厂之质量
-根据电缆尺寸度身定作应力锥保证长期运行可靠性
-完备的专用工具选择,
保证安装效率
技术规范:
系统电压 (Um) (kV) 123 145 170 长度
(mm): 757 757 757
重量 (kg): 60 60 60