




介质孔径大小及孔隙率对生物分离的影响
除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个的孔径大小,其可及表面积,分离。比如用于抗l生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗l体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物体,需要400纳米以上超大孔的介质。超大孔径介质制备技术难度极大,这也是为什么目前没有好的层析介质可以有效分离病毒的原因之一。
与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,抗l体主要生产成本也转移到下游。下游工艺在整个生物制药生产中占据60%以上生产成本,也被认为是需要改进的技术领域。下游工艺***性决定了***的质量,及***生产效率和成本,也成为生物制药企业的核心竞争力所在。生物制药下游生产工艺目的就是把目标药l物分子从复杂发酵液体系中分离出来以满足***纯度及质量的需求。一方面监管部门对生物药的纯度和质量要求越来越高,另一方面生物分子具有结构复杂,且对外部条件敏感,稳定性差,杂质多,浓度低等特点,使得生物药分离纯化的挑战更大。比如说治l疗用抗l体不仅对含量有严格的要求,还必须去除各种潜在的杂质如宿主HCP, DNA,Endotoxin, 抗l体聚集体及降解片段等(表2)。
高柱床提高抗l体批处理量和生产效率 目前GE 生产的Protein A 软胶占据抗l体分离纯化的90%市场。由于软胶机械强度差,耐压受限(压力小于3公斤),为了防止柱床塌陷,一般柱床只装到15cm高度,严重限制抗l体的生产效率,增加抗l体的生产成本。柱床高不仅可以增加抗l体的批处理量,提供抗l体的生产效率,还可以减少QA及QC等配套人员的工作量,减少纯化系统的数量及设备***。其实,通过高柱床提高生产效率的方法早在成本更加敏感的胰岛素、白蛋白、多肽等生物药生产上成功实现。但要增加柱床高度,Protein A 介质必须具有高机械强度性能,以满足高柱床高流速下产生的压力。纳微开发的新一代单分散Protein A 介质是以高交联的单分散聚丙l烯酸酯为基质,机械强度高,耐压性能好。因此柱床可以装到40cm以上高度,使得抗l体批处理量及生产效率可以提高一倍以上,不仅减少设备***及厂房的占用面积,而且大幅度降低生产成本。另外实验证明提高柱床还可以提高介质有效载量和利用率,柱床提高一倍,抗l体上样量至少增加2.2倍(见表)。高柱床可以解决因为上游发酵规模的扩大及蛋白表达量的增加而带来下游分离纯化生产瓶颈的问题。另外软胶放大往往只能通过等高放大,而纳微生产的高机械强度Protein A 可以等保留时间放大。
如此神奇的材料,却来自于沙子。纳微科技用十多年如一日的刻苦攻关,上演了“沙子变黄金”的奇迹。2007年落户园区,公司主打的纳米产品,很长一段时间主要用于电子行业。十多年间,伴随着园区生物医l药产业的起步、发展、集聚,与众多药企为邻的纳微科技,体会到了“卡脖子”技术之痛,决心要在相关领域实现突破。也正是靠着在电子行业赚到的利润,纳微科技支撑起了在生物制药分离纯化用纳米微球领域旷日持久的研发,并将沙子锁定为纳米微球的原料。“沙子的主要成分是二氧化硅,我们的纳米微球成分也是二氧化硅。简单来说,就是把沙子溶解,提取出硅l烷***,再通过特殊工艺将其做成标准化的纳米微球材料。”江必旺说。这两年,随着园区生物医l药产业的迅猛发展,纳微科技在纳米微球产品的质量和生产工艺上实现了弯道超车,成为信达生物、恒瑞医l药、博瑞医l药、开拓药业等园区众多“明星”生物药企的合作伙伴。“可以说,我们是跟园区的生物医l药产业一起协同创新,实现了在‘卡脖子’领域的国产化替代。”江必旺说。