船舶推进轴系是船舶动力装置的重要组成部分,对船舶的稳定运行有很大的影响[1]。由于轴和螺
旋桨的重力在艉管轴承处产生的单边载荷,校中计算弹性连轴器,会造成轴承的边缘磨损。通过校中计算可解决轴承间载
荷分布不均问题。但是,轴承自身的偏磨会显著影响轴承的承载性能,并对轴系的动态校中性能和
船体振动造成影响。
Piggot[6]的研究结果表明,滑动轴承的轴承孔和轴颈之间的相对夹角达到0.0002rad ,轴承的承载性
能将下降40%。J. Bouyer 和M. Fillon[7]则认为由于校中不良引起的轴承和轴颈之间的夹角和附加弯矩
会对滑动轴承性能的显著影响,试验表明,70Nm 的附加弯矩能使直径100mm 的轴承中截面的承
载能力下降20%,油膜厚度下降80%,容易造成油膜,引起轴承磨损。
在我国的船舶行业标准CB/Z 338-2005 中建议艉管后轴承支承点处的截面转角不超过
-4 3.5 10 rad 。如果计算值不超过此值,轴承按直线布置,即忽略轴承和轴线之间的夹角;如果超过
此值则需要对轴承进行斜镗孔处理,使轴承转角符合要求。尽管如此,由于当前的轴系校中工艺技术
及安装精度的限制,轴承和轴颈仍不能做到完全顺应,存在一定的夹角和附加弯矩,达不到轴承的性
能使用要求,常引起轴承偏磨,使其固有频率下降,甚至引起共振。
径向轴承及推力轴承处边界条件的准确建立是船舶推进轴系校中计算的***与难点。基于流体动压
润滑理论,分析不同运行工况下考虑轴颈倾斜的径向轴承润滑特性,将轴承间隙、油膜厚度、支承基座及船体柔
性以等效轴段挠度的形式计入轴系校中过程,并与刚性支承、弹性支承模型计算结果进行对比分析;计算因推
力轴段转角、支承基座变形而引起的推力轴承附加力矩,并分析其对轴系校中的影响;建立轴承润滑与轴系校
中耦合计算方法。结果表明:由径向轴承间隙、轴颈倾斜而引起的支点位置改变、润滑油膜厚度、推力轴承处附
加力矩对轴系校中具有重要影响。
船舶推进轴系校中是设计轴承轴向间距、径
向变位以获得运转状态下合理的轴段应力及轴承
反力的过程。良好的轴系校中状态是推进轴系安
全、稳定运行的重要保证,校中状态不良的轴系将
会引起轴段应力过大、轴承受力不均和磨损,以及
轴系振动噪声过大等问题,严重影响船舶运行安
全,且还将引起巨大的经济损失。
随着船舶振动噪声要求的提高,现有的静态校中设计方法不再适用,需要考虑轴系校中过程中不对
中量对轴系振动的影响.通过对弹性联轴器处三种不对中型式进行受力分析,获得了不对中激励力数学模
型,通过台架试验验证了数学模型的准确性.研究表明:轴系不中激励作用下,1倍频和2倍频以及通频振动
计算结果与台架试验相对误差小于20%;校中过程中弹性联轴节处不对中量越大,所产生的激励的
幅值越大,造成的振动也越大.
对中计算船舶维护-欧普兰由北京欧普兰科技有限公司提供。北京欧普兰科技有限公司()为客户提供“软硬件产品,软件培训,设计服务”等业务,公司拥有“欧普兰”等品牌,专注于软件代理等行业。欢迎来电垂询,联系人:刘总。