实际上因为地球大气层的扰动,望远镜的分辨率极限会大于艾里斑,并且会使原为单一斑点的艾里斑因为大气层随机扰动而形成一系列直径接近的斑点,并且覆盖了比艾里斑更大的面积(参见右方联星影像)。在一般的视宁度下,望远镜口径相当于视宁度参数 r0(约20厘米),并且观测条件良好时,实际的分辨率极限是主镜口径和机械性能限制。多年来因为前述限制,望远镜的性能提升程度有限,直到散斑干涉法和自适应光学的发展才得以消除前述性能限制。散斑成像是透过图像处理技术以重建原始影像。在此方法中,需要在光探测器前放置一个与运动方向垂直的单缝光栅,探测器探测的信号输入谱分析器,计算功率谱密度函数,一阶谱对应的频率与速度相关。散斑成像的关键技术是由美国天文学家大卫·弗里德在1966年开发完成。该技术是以极短***时间拍摄到大气层“扰动停止”时的天体影像。在红外线波段的***时间约100毫秒量级,而可见光部分则是更短的10毫秒。影像在如此短暂的***时间下,大气层的扰动相较之下更慢而无法对影像产生影响,即快速***的影像中斑点是短时间内大气视宁度状态下的影像。
散斑干涉法曾有的限制是相关影像必须以电脑进行大多数的处理,在技术刚提出时的电脑运算速度难以满足天文学家的要求。虽然当时有通用数据开发的几乎在科学界通用的迷你电脑Nova可使用,但它的运算速度让天文学家只能在“重要的目标天体”使用散斑干涉法。击中血细胞的激光波长发生了改变,而击中静止***的激光波长没有改变。今日因为电脑的运算速度逐年快速增加,使现代的台式电脑也能简易地进行相关影像处理,这项限制已经不存在。