车辆悬架弹簧的特征是除足够的疲劳寿命外,其变形要小,即抗松弛性能要在规定的范围内,否则由于弹簧的不同变形,将发生车身重的心偏移。同时,要考虑环境腐蚀对其疲劳寿命的影响。随着车辆***期的增大,对变形和疲劳寿命都提出了更严格的要求,为此必须采用的设计方法。有限元法可以详细预测弹簧应力疲劳寿命和变形的影响,能准确反映材料对弹簧疲劳寿命和变形的关系。
传统的马氏体不锈钢2Cr13、3Cr13、4Cr13和1Cr17Ni2缺乏足够的延展性,在冷顶锻变形过程中对应力十分敏感,冷加工成形比较困难。加之钢的可焊性比较差,使用范围受到限制。为克服马氏体钢的上述不足,近来已找到一种有效途径,就是通过降低钢的C、Ti含量,增加Ni含量,开发一个新系列合金钢——超马氏体钢。这类钢抗拉强度高,延展性好,焊接性能也得到改善,因此超马氏体钢又称为软马氏体钢或可焊接马氏体钢。
目前在弹簧方面有应用前途的单向形状记忆合金,以50Ti和50Ni性能好。形状记忆合金制成的弹簧,受温度的作用可伸缩。主要用于恒温、恒载荷、恒变形量的控制系统中。由于是靠弹簧伸缩推动执行机构,所以弹簧的工作应力变化较大。
陶瓷的弹性模量高,断裂强度低,适用于变形不大的地方。目前正在开发的有耐热、耐磨、绝缘性好的陶瓷,应用的有超塑性锌合金(SPZ),在常温下具有高的强度。另外,还有高强度的氮化硅,能耐高温,可达1000℃。但陶瓷弹簧不适用于在冲击载荷下工作。