恰当装卸模具和,缠绕机只有在恰当使用缠绕模的情况下才能常规工作,恰当的装卸模对缠绕线圈的形成起着关键作用。模具的装卸阶段通常是先松开紧固装置,然后拆卸机器设备的,后通过移动装置拆卸线圈。在安装阶段中,应留意在缠绕机的固定装置,调整端框,使其能够安装到芯棒上,终锁定。在绕制过程,不应松开顶针,停止机器设备,以提高机器设备的效率。
绕线机未来的研究方向应该由以下方面展开:(1)分析全自动变压器绕线机的生产工艺流程,设计绕线机的整体方案,对卷绕主机、张力可调放线架、自动排线装置、主副绝缘层供给及驱动装置的机械结构设计做出分析,建立变压器全自动绕线机的控制系统,包括倍福控制系统、绕线机三个轴的伺服系统和张力控制的伺服系统三部分,并进行硬件选型及设计和软件部分的设计。(2)设计自动排线控制系统,根据线圈的结构设计可以对绕组的几何形状进行选择,以交流伺服系统为核心的高精度排线驱动机构运作,卷绕主轴和排线机构分离驱动,对于主轴速度和排线方向变化而引起的绕制误差,采用惯性误差补偿的方法,使线圈匝与匝之间紧密排列。将矩形线圈绕制过程中的特殊性进行曲线分析,与传统的导线张力控制方案作对比,设计一种带有缓冲补偿机构的导线张力控制方案,分别进行两种方案下的缠绕实验,根据实验结果对比分析,验证本文设计自动排线控制系统是否具备良好的性能。(3)对矩形变压器绕制结构进行建模分析,建立绝缘带张力控制系统方案,对系统中各组成部分进行受力分析并建立数学模型,设计一种多输入单输出的MISO绝缘带张力控制器,实现绝缘带缠绕张力控制的稳定性,并在Simulink系统中对缠绕半径和缠绕角度以及缠绕张力值进行分析,根据结果验证控制器是否合理。在实际的变压器绕制过程中,不同的绕制速度下,调整缠绕张力设定值时,验证本文设计的带张力控制器是否具备良好的性能。