关于低温压力容器无损检测方法你了解多少
近些年,科技带动经济的不断发展,使得各行各业的生产活动逐渐趋向智能化,经济水平的不断提高,使得人们的生产要求也不断在提高,全自动取代手工操作成为未来发展的必然趋势。
其中,超声波探伤行业的发展也是得到了飞速的提高,智能化的产品正在逐步取代普通产品。超声波探伤主要是用在无损检测焊接质量,来检测焊接时的质量究竟怎么样,因为焊接检测的方法有很多,我们一般把这种检测来进行分类,主要分为两大类,一是按焊接检测数量分,二是按焊接检验方法分。在一定的光源下(黑光或白光),缺陷处的渗透剂痕迹被显示(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。那么,超声波探伤究竟在无损检测焊接质量中起到了什么样的作用,对于焊接检测来说,超声波探伤是不是需要存在的,下面小编简单的做一个介绍。
1.探测面的修整:应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等
2.耦合剂的选择应考虑到粘度、流动性、附着力、对工件表面无腐蚀、易清洗,而且经济,综合以上因素选择浆糊作为耦合剂。
3.由于母材厚度较薄因此探测方向采用单面双侧进行。
4.由于板厚小于20mm所以采用水平***法来调节仪器的扫描速度。
5.在探伤操作过程中采用粗探伤和精探伤。
6.对探测结果进行记录
希望这些小技巧对你有所帮助。
无缝钢管无损检测的方法
无损检测的方法很多,目前主要应用于无缝钢管表面质量检查的方法包括超声波探伤
涡流探伤、磁粉探伤、漏磁探伤、电磁超声波探伤和渗透探伤等。由于每种检验方法的物理基础不同,因此,不同的无损探伤方法对于不同类型钢管缺陷的探伤敏感度也不相同,且各具优缺点。比如,涡流探伤、磁粉探伤、漏磁探伤等方法,适宜检测钢管表面或近表面的缺陷。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,后用天平称重方法测定该元素的含量。其中渗透探伤于钢管表面开口缺陷的检查;而磁粉探伤、物流探伤、漏磁探伤属磁力探伤。只限于铁磁性材料的检查。在上述这些探伤方法中,涡流探伤主要对点状(孔洞形)缺陷敏感;其它探伤对现状(裂纹)缺陷敏感;而超声波探伤则对表面及内部缺陷的反应较迅速灵敏但对钢管缺陷的定量或定性分析尚存在一定的困难,并且超声探波伤还受钢管的形状及晶粒度等限制。因此。没有哪一种无损探伤方法是十全十美的,各种方法之间应是互补的关系,不能取而代之。所以,根据产品技术要求的差异,不同的钢管标准规定了相应的钢管检查项目和无损检测方法。
什么是TOFD
超声波衍射时差法,是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和***。
TOFD技术与传统脉冲回波技术的的两个区别在于:
A) 更加的尺寸测量精度(一般为±1mm,当监测状态为±0.3mm),且检测时与缺陷的角度几乎无关。尺寸测量是基于衍射信号的传播时间而不依赖于波幅。
B) TOFD技术不使用简单的波幅阈值作为报告缺陷与否的标准。由于衍射信号的波幅并不依赖于缺陷尺寸,在任何缺陷可能被判不合格之前所有数据必须经过分析,因此培训和经验对于TOFD技术的应用是极为基本的要求。
TOFD技术的物理原理
衍射现象是TOFD技术采用的基本物理原理。
衍射现象的解释:波遇到障碍物或小孔后通过散射继续传播的现象,根据惠更斯原理,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。
TOFD工作原理
TOFD技术采用一发一收两个宽带窄脉冲探头进行检测,探头相对于焊缝中心线对称布置。其局限性在于仅能应用于磁性材料,且无法探知缺陷深度,工件本身的形状和尺寸也会不同程度地影响到检测结果。发射探头产生非聚焦纵波波束以一定角度入射到被检工件中,其中部分波束沿近表面传播被接收探头接收,部分波束经底面反射后被探头接收。接收探头通过接收缺陷的衍射信号及其时差来确定缺陷的位置和自身高度。
超声波在介质中传播时有多种波型,检验中的为纵波、横波、表面波和板波。野外现场测定法渗水试验(infiltrationtest)一般采用试坑渗水试验,是野外测定包气带松散层和岩层渗透系数的简易方法。用纵波可探测金属铸锭、坯料、中厚板、大型锻件和形状比较简单的制件中所存在的夹杂物、裂缝、缩管、白点、分层等缺陷;用横波可探测管材中的周向和轴向裂缝、划伤、焊缝中的气孔、夹渣、裂缝、未焊透等缺陷;用表面波可探测形状简单的制件上的表面缺陷;用板波可探测薄板中的缺陷。折叠应用水浸(喷水)法检测钢管、锻件;单(双)探头检测焊缝;多探头检测大型管道;板材超声波探伤;复合材料超声探伤;非金属材料检测等应用。折叠