***净化工艺设计中主要设备的选择和应用建议
(一)废热锅炉和硫冷凝器的应用建议
***净化过程中对硫进行回收的废热锅炉,通常都处在一个高温差、高压力、高热和高硫腐蚀性的环境下,因此在实际生产过程中,废热锅炉的管头、热旁通管、高温端管板、硫冷凝器的出口端非常容易发生严重腐蚀的情况,捕沫网会随着腐蚀的加剧而破碎。钛这种材料当处于海水中与其他材料相比,可以接受更高的水流速度,当处于静止海水中是,钛的抗腐蚀点也比不锈钢等材料更为合适,且抗缝隙腐蚀的能力也更好。因此,要从如下几个方面加强对废热锅炉工艺和设备的管理:
1、管板的材质选择以及对传热系数的计算;
2、高温端的防腐隔热保护,以及炉管的厚度和耗材选择;
3、选择合适的结构形式,以缩小锅炉的体积,提高传热的效率,防止出现局部过热的情况;
4、针对掺合管的形式和掺合方式进行改进,从设计和操作上避免出现硫积存的情况。
对于冷凝器的操作要尽可能避免出现由于硫积存而引发的堵塞情况,以及由于燃烧导致的剧烈腐蚀。
液化***加气站工艺技术
液化***加气站主要是为了公共汽车而服务,逐渐朝着出租车和城际列车覆盖,其工艺流程主要有卸车、调压、加气以及卸压。首先,卸车流程即把槽车或者是集装箱中运送的液化***转移到加气站的储罐中,这是液化***进入加气站之前必须经历的一个流程。通常情况下,液化***卸车操作方式主要包括LNG增压器卸载、增压器与泵进行联合卸车以及潜液式LNG泵卸车。笔者将详细介绍增压器与低温泵的联合卸车。针对第二种故障,首先要查看电源开关,若闭合开关后仍无供电,就要检查计算机电源插头有无接触不良或松动、主机***有无损坏。
当液化***由槽车运至加气站后,通过槽车所备的空温式汽化器给予储罐施压,使其压力升高,当槽车同其储罐间构成压差之后,则经由压差的力量,将液化***进行卸车,使其进入到加气站的储罐里。同时,开启潜液式LNG泵,通过泵进行液化***的卸车作业,使卸车速度变快。待卸车完成之后,槽车中会有残留一些气相的***,为了避免因这些***的影响而使储罐里的压力快速,导致卸车速度受到影响,因此需要卸车台的气相管道对气相的***进行回收以及排放操作。改进后的方案使用干气产品和丙塔顶料的热量与甲塔底再沸料换热,节省了制冷和加热公用工程。
***锅炉内的实际炉膛温度主要取决于哪些因素
***在空气中的绝热燃烧温度是1950摄氏度.绝热燃烧温度的定义是在燃料(***的主要可燃成分是CH4和一些C2-***烃类)与空气中的氧气在当量预混燃烧、无预热、系统绝热条件下的燃烧温度.这是一个理论上限,除非采用增氧或纯氧燃烧,或者预热空气,否则不会超过这个温度.
***锅炉内的实际炉膛温度主要取决于如下几个因素:(1)***与空气的混合方式(预混还是扩散燃烧,空气分段方式,一二次风配比及总过量空气系数),(2)空气是否预热以及预热温度,(3)炉膛内的受热面布置.现代大型锅炉都采用低NOx排放设计,以避免高氧浓度与高温在同一区域同时出现.因此可以假设,该锅炉采取空气分段燃烧,一次风与燃料预混.但是CFD模拟表明,在火焰中心区,1高温度仍然在1600-1900摄氏度之间.在火焰中心之外,温度应迅速降低到1500摄氏度以下.贴墙及边角部位更低.
顺便指出,***燃烧的温度下限则由CH4-O2反应的化学平衡决定.为保证燃尽,燃烧温度不应低于875摄氏度(即便用催化燃烧也是如此).