气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。一般作为更复杂装置或机器的旋转动力源。气动马达按结构分类为:叶片式气动马达,活塞式气动马达,紧凑叶片式气动马达,紧凑活塞式气动马达。
1)径向活塞气动马达非常相似早期的老式径向活塞航空发动机,区别只是径向活塞马达是用空气作为燃料。径向活塞马达分4,5 和 6 缸的径向活塞马达,其输出扭矩是由气缸内活塞上的压力产生的。径向活塞气动马达的特点是低速动力输出装置,空转速度通常在3500RPM或低于3500RPM.径向活塞气动马达能够在任何输出速度上承受重载,径向活塞式马达主要用作固定动力源。通过三维建模软件UG建立曲轴三维模型,得出曲轴的质量、质心和惯性矩等特征参数,根据所得参数对五缸星型分布气动马达的平衡性进行分析和计算。
2)活塞式气动马达结构原理通过曲柄或斜盘将若干个活塞的直线运动转变为回转运动的气动马达。其结构有径向活塞式和轴向活塞式两种。
a所示为普通的径向活塞式气动马达的结构原理。其工作室由活塞和缸体构成。3~6个气缸围绕曲轴呈放f射状分布,每个气缸通过连杆与曲轴相连。通过压缩空气分配阀向各气缸顺序供气,压缩空气推动活塞运动,带动曲轴转动。当配气阀转到某角度时,气缸内的余气经排气口排出。改变进、排气方向,可实现气马达的正、反转换向。2、级数:减速马达所含齿轮的套数,采用单套齿轮的称为单级,减速比一般小于10:1,采用多套齿轮的称为多级,以满足较大的传动比的要求。
b所示为轴向活塞式气马达的结构原理。在轴向均布着气缸,在输入压缩空气的作用下气缸活塞依次作往复直线运动,通过斜盘作用,把直线运动转变为输出轴的回转运动。
气动马达工作原理同液压马达相似。压缩空气从输人口A进入。作用在工作室两侧的叶片上。由于转子偏心安装,气压作用在两侧叶片上产生的转矩差,使转子按逆时针方向旋转。当偏心转子转动时,工作室容积发生变化,在相邻工作室的叶片上产生压力差,利用该压力差推动转子转动。作功后的气体从输出口排出。若改变压缩空气输入方向,即可改变转子的转向。如果马达应用不当,机器连续工作一段时间后,壳体里的油会因各种因素而不能被释放,结果马达的壳体压力会越来越高,导致***l先使轴密封失效。
a所示叶片式气动马达采用了不使压缩空气膨胀的结构形式,即非膨胀式,工作原理如上所述。b所示叶片式气动马达采用了保持压缩空气膨胀行程的结构形式。当转子转到排气口C位置时,工作室内的压缩空气进行一次排气,随后其余压缩空气继续膨胀直至转子转到输出口B位置进行二次排气。气动马达采用这种结构能有效地利用部分压缩空气膨胀时的能量,提高输出功率。非膨胀式气动马达与膨胀式气马达相比,其耗气量大,效率低;高温马达的清洗检査的注意事项:(1)高温马达各零件拆卸后或装配中,必须清洗擦拭干净,内部机件擦拭时禁止用棉纱、线头,可用干净棉布。单位容积的输出功率大,体积小,重量轻。
叶片式气动马达一般在中、小容量及高速回转的范围使用,其耗气量比活塞式大,体积小,重量轻,结构简单。其输出功率为0.1—20kW,转速为500~25000r/min。另外,叶片式气马达启动及低速运转时的特性不好,在转速500r/min以下场合使用,必需要配用减速机构。叶片式气动马达主要用于矿山机械和气动工具中。马达交流电动机由定子和转子组成,在模型中,定子就是电磁铁,转子就是线圈。
电动机按工作电源分类 根据电动机工作电源的不同,可分为直流电动机和交流电动机。其中交流电动机还分为单相电动机和三相电动机。
微型马达生产厂家马达是玩具能够保持持续动力的主要动力源。设计人员在玩具生产中很少有机会设计一个马达,主要是选用。玩具马达的选用也有很多技巧和方法。
在玩具制造中常用的马达(电机),有万宝制(Mabuchi)、标准(Standard)等,这些马达生产厂家的产品都有马达性能的参照表,设计人员很少有机会设计一个马达,主要是选用,当然也可能因为某种原因而专门设计一个马达(很多马达厂的工程师都是从Mabuchi出来的,所以Mabuchi的标准基本可以用作玩具业的马达标准)。在使用过程中常出现马达输出轴漏油现象,即使是更换了输出轴的动密封也无济于事,这就是在选择摆线马达且串联应用时,忽略了壳体泄油压力的问题。