沸石转轮浓缩催化燃烧法处理有机废气的工作原理是:含VOCs废气进入沸石转轮,此时废气中VOCs绝大部分被转轮上的沸石吸附,而使废气中VOCs的含量大幅降低,从而成为较洁净的气体,达标排放至大气中,经过转轮吸附再高温脱附出来的废气就变成高浓度的VOCs气体,可降低后续处理程序的操作成本。利用沸石浓缩转轮将大风量、低浓度的废气浓缩为小风量、高浓度的废气,再以催化燃烧的方式,将有机组分转化为无害的CO2和H2O,以达到去除VOCs的目的。
沸石转轮热力燃烧处理工艺,特别适用于处理大风量、低浓度有机废气,可以有效提高处理效率、降低运行成本,VOCs去除效率可达到90%以上,有的甚至能达到99%以上。
沸石转轮吸附的目的是为了将VOCs废气从大风量浓缩到小风量高浓度。在小风量情况下,高浓度的VOCs气体将更地被燃烧炉处理。含VOCs的废气在经过旋转转轮处理区的时候被收集,当气体过了转轮后,VOCs就被转轮上的吸附介质吸附从而得到去除。
智能控制沸石转轮VOCs净化处理节能热风机组采用常压式输出热能空气,安全性能高。经过该机组高温处理完的挥发性有机废气(主要成分为乙醇、异、、醋酸乙酯、醋酸丁酯、丁酯等)的总排量低于***和地方***中浓度和速率的排放标准。经过沸石转轮浓缩系统净化处理的洁净气体,重新循环运用到印刷机以及复合机的烘干,为企业节约烘干成本。
在设备日常运行中,各模块数据会上传到华世洁云平台,客户可以通过PC端、手机端对设备的运行情况进行查看和监控,对报警信息及时处理。客户可以根据当地监管要求,加装在线监测设备,实时传输到当地环保部门。
VOCs经转轮浓缩后,再采用氢化燃烧技术和催化燃烧技术进行燃烧处理。国外对设备工艺进行持续的改进,日本三菱公司在20世纪就设计利用移动阀切换的蓄热装置,采用了具有高蓄热能力的陶瓷蜂窝体,并实际应用。催化剂也是影响废气处理的关键内容,将Pd、Au、Ce等金属催化剂用于催化燃烧降解的实验结果在国外已见报道。目前,国外沸石浓缩转轮的相关产品价格昂贵,在我国的VOCs废气处理中很难大规模应用。
国内的沸石吸附浓缩设备起步较晚,生产企业多以组装、代理为主要经营模式,作为核心的沸石吸附单元基本依赖进口,国外具有生产技术的企业也在国内相继设立设备组装厂。不过,国内现已有多家高校及科研院所如华南理工大学、浙江大学等对沸石转轮进行了相关研究,使得国内现有的沸石转轮成型及设备技术水平与国外的差距在逐步缩小。近几年,我国在催化燃烧技术方面也已取得较大发展,国内已有工业应用及推广的实例。对催化燃烧技术而言,采用蜂窝状换热器回收低品位热源、进一步优化系统的结构设计及实现标准化、模块化设计是未来的发展趋势。虽然我们已经有了较好的研究基础,但是在核心材料研发、系统化集成、示范工程应用等方面还有待突破。
催化燃烧,催化燃烧设备,催化燃烧废气处理设备,催化燃烧设备应用新型活性炭(多为蜂窝炭或纤维炭)吸附浓缩低浓度的有机废气,吸附接近饱和后引入热空气加热活性炭,使有机废气脱附出来进入催化燃烧床进行无焰燃烧净化处理,热气体在系统中循环使用或增设二级换热器进行热能回收。该法将低浓度的有机废气通过活性炭将其浓缩成高浓度的有机废气再通过催化燃烧彻底净化。该法吸取了吸附法和催化燃烧法的优点,克服了各自单独使用的缺点,是目前国内治理有机废气的成熟、实用的方法。
离线型催化燃烧设备工作时,其中2个吸附箱处于吸附状态,没有处于备用状态的吸附箱。当需要进行脱附时,吸附箱必须停止吸附状态,依次进行脱附。该箱体脱附完成后继续进行吸附,适合不连续排放废气的工矿使用。
热交换器(催化燃烧炉):将有机气体分解后的热能和废气源冷气流进行冷热交换,置换热能,提高废气源的温度。当废气浓度达到一定值时,通过热交换器的作用,可以保证设备在无运行功率(或低功率)的状态下正常运转,是催化净化装置中对废气源进行次温度提升装置,也是设备中节能设施之一;通过热交换器内部对气流的合理控制,使交换器的效率保证在 60%以上。结构采用不锈钢冲压成板式换热器,合理的布置, 使冷热气流接触,能量进行置换。
预热室:废气源在进入催化燃烧室之前,经温度检测仪检测,温度达不到催化反应的条件,由布置在预热室内的电加热系统进行温度的第二次提升;电加热组件为红外线加热管,由固定绝缘板固定,维护更换十分方便。