风冷式干渣机
干式排渣机(简称干渣机)是燃煤锅炉干式排渣系统的关键设备,它主要由钢片与钢丝网组成的输送链,作为承载和牵引部件,来实现灰渣的收集和输送工作。工作时,液压油缸将输送链张紧,由动力装置带动驱动辊筒转动,通过驱动辊筒和输送链之间由张紧力而产生的摩擦力,来带动输送链的运行,从而实现灰渣的收集和运输,落在下部的细灰由清扫链刮板来完成收集和输送。在灰渣运输过程中,因锅炉负压系统的冷空气作逆向流动,使灰渣冷却到适宜的温度排出。周边喷淋孔与顶部溢流槽,可确保内部高温落渣的完全粒化,并减少渣井热负荷。
干渣机由尾部、平段、弯段、斜段、头部、平台、液压站、电控系统等部分组成。
3.1
干渣机的就位、安装:
3.1.1 干渣机的安装以锅炉渣斗的出口中心线为基准,确定安装位置。
3.1.2 平台就位,并安装头部部分。
3.1.3 然后依次安装斜段、弯段、平段、尾段各部分。
3.1.4 各段箱体就位后,调整箱体的垂直度和直线度,使各托辊、头部驱动辊筒、尾部张紧辊筒处于水平位置。
3.1.5 各段中心线连线的直线度为 3/6000,从头部至尾部的中心线直线度为 8 mm。
3.1.6 各段调整完毕后,在各段的连接部位加装厚度为 5mm的石棉布密封,用螺栓紧固。
3.1.7 斜段的箱体支腿用螺栓与平台斜梁紧固;在弯段的底部加辅助支撑;平段、尾部的箱体支腿与基础与预埋铁焊接,焊脚高度 8mm。
3.2
头部输送链驱动辊筒
3.2.1
驱动辊筒对称中心线与排渣机纵向中心线重合度偏差 ≤3mm。
3.2.2
驱动辊筒轴线的水平度偏差 ≤0.2/1000。
3.2.3
驱动辊筒轴线与干渣机纵向中心线的垂直度偏差 ≤2mm。
3.2.4
驱动滚筒轴线与张紧滚筒轴线平行度 ≤5mm。
3.3 头部清扫链驱动链轮
3.3.1 驱动清扫链轮轴横向中心线与干渣机纵向中心线重合度偏差≤2mm。
3.3.2 驱动清扫链轴的水平偏差 ≤ 1/1000。
3.3.3 驱动清扫链轮轴与干渣机纵向中心线垂直度偏差 ≤2mm。
3.3.4 驱动清扫链轴与尾部张紧链轮轴的平行度 ≤5mm。
3.4 尾部输送链张紧辊筒
3.4.1 输送链张紧辊筒轴线的水平偏差 ≤0.2/1000。
3.4.2 张紧辊筒横向中心线与排渣机纵向中心线重合度偏差 ≤3mm。
3.4.3 张紧辊筒轴线与排渣机中心线垂直度偏差 ≤2mm。
3.4.4 张紧辊筒与头部驱动辊筒轴线的平行度 ≤5mm。
3.5 尾部张紧清扫链轮轴
3.5.1 张紧清扫链轮轴的横向中心线与排渣机纵向中心线的重合度偏差 ≤2 mm。
3.5.2 张紧清扫链轮轴的水平偏差 ≤1/1000。
3.5.3 张紧清扫链轮轴线与排渣机纵向中心线垂直度偏差 ≤2 mm。
3.5.4 张紧清扫链轮轴与驱动清扫链轮轴的平行度 ≤5 mm。
3.6 尾部张紧辊筒与张紧清扫链轮的张紧油缸
3.6.1 尾部箱体两侧张紧油缸的平行度 ≤2 mm,张紧油缸与张紧辊筒、张紧链轮轴线的垂直度 ≤2 mm。
3.7
输送链托辊、托轮、压轮
3.7.1 托辊与箱体侧板的垂直度误差为 1 mm,任意相邻两托辊的平行度误差为 1 mm,托辊表面的母线应处于同一平面,任意相邻三组托辊表面母线的相对高差
≤2 mm。
3.7.2 托辊的摩擦阻力矩 ≤2 N.m
3.7.3 托轮与箱体侧板的垂直度误差为 1mm,任意相邻两托轮的平行度误差为 1 mm。
3.7.4 托轮的摩擦阻力矩 ≤1 N.m。
3.7.5 压轮与箱体侧板的垂直度误差为 1 mm,任意相邻两压轮的平行度误差为 1 mm。
3.7.6 压轮的摩擦阻力矩 ≤1 N.m。
3.8 清扫链托轮
3.8.1 清扫链托轮与箱体侧板的垂直度误差为 1 mm,任意相邻两清扫链托轮的平行度误差为 1 mm。
3.8.2 各段上相对的两个清扫链托轮的链槽中心线距离为 1570±1 mm同侧相邻的三个清扫链托轮链槽的中心线直线度误差为 2 mm。
3.9 限位轮及冷却风门
3.9.1 限位轮轴线与箱体侧板的平行度误差为 1 mm,与相邻托辊的垂直度误差为 1 mm;限位轮应转动灵活、无卡滞现象。
3.9.2 箱体侧板的侧风门进风口挡板应移动顺畅。
3.9.3 斜段顶盖与头部顶板冷却风门应转动灵活、无卡滞现象。
3.10 液压管路
3.10.1液压管路安装时按照液压系统图的油路走向进行安装,在安装时应使管线短,转弯数少。
3.10.2所有液压管路内壁应清洁、光滑,无腐蚀、氧化皮、裂痕等缺陷。
3.10.3管件的弯曲半径为R70~R100,管件弯制后的椭圆率不超过10 %,弯曲处不得有波纹、凹陷等缺陷。
3.10.4管路每间隔1.5 m左右应设有管夹。
3.10.5管路在制作后,应用专用清洗液对管路进行清洗,并用压缩空气将管路内壁吹干净;安装时不准有任何***进入管路内。
3.10.6所有管路及接头连接处,均不允许有渗漏现象。
3.11 输送链安装
3.11.1在尾部放一台 5 t的卷扬机,准备一条长约 100 m,直径为?15的钢丝绳;将钢丝绳绕过头部的驱动辊筒,与尾部的卷扬机连接,钢丝绳的另一端待与输送链连接。
3.11.2输送链约为 4 m一段,每段的两端各有三节钢条不安装在钢丝网上。从尾部开始安装,先将输送链平铺在托辊上,连接钢丝绳,用卷扬机牵引移动约 4 m后停止,连接下一段输送链。
3.11.2两段输送链之间的钢丝网用串条连接,串条端部与钢丝网端部用不锈钢焊丝焊接。
3.11.3在两段输送链的连接部位装上钢条,用螺钉固定,并将螺钉与钢条点焊。
3.11.4当输送链铺到驱动辊筒时,绕过驱动辊筒返回,将输送链放到托轮上,再启动卷扬机。
3.11.5后各段输送链都连接为一封闭的环形钢带,检查各段连接处的焊接情况,发现问题及时补焊
。
3.12 清扫链安装
3.12.1清扫链由链条和刮板组成,链条每隔
1024 mm安装一块刮板;刮板与开口链环联接用螺栓紧固。
3.12.2清扫链的安装同样用卷扬机来牵引,当清扫链绕回驱动链轮后,回程链条应安置在托轮槽内,不允许落在槽外。
青岛科成亿环保电力科技有限公司干渣机钢带:
干式除渣机的结构特点:
1.输送链
输送链所有零件均采用耐热、线膨胀系数小的不锈钢材料制成,它是干式除渣机的核心部件,主要由不锈钢网和不锈钢板组成:
不锈钢网采用螺旋型输送网结构,它由一根一根像螺旋的不锈钢丝连接而成。即使在运行过程中,螺旋型的不锈钢丝有一处断裂,该不锈钢丝还和其它螺旋型不锈钢丝相连,不锈钢输送链还能继续运行。
不锈钢板由多个螺栓、螺母固定在不锈钢网上,并点焊防松。不锈钢输送链为平带形式,它平放在上部托辊上,由密布的平托辊承托,靠与传动滚筒间的摩擦力牵引,完成输送。不会有掉链、卡死现象。每米宽的不锈钢输送带能承受380000N的拉力,每平方毫米能承受850N的压力。正常运行时靠机械锁紧,油缸不受力,对液压系统无冲击,安全可靠。使用寿命可达50000小时
不锈钢输送带的尾部滚筒固定在张紧装置上,尾部张紧采用气动自动张紧装置,在不锈钢输送带运行过程中,其各点受到同样的张紧力,从而避免了因输送带受力不均而跑偏。
在干式除渣机壳体内,不锈钢输送带的输送段和回程段的两侧均设有防偏轮,防偏轮能防止不锈钢输送带跑偏。
履带式干渣机由克莱德贝尔格曼(DRYCON,德国,原为英国)公司研制开发的产品 ,该设备适用于常规燃煤锅炉底渣的连续输送,其工作原理是采用圆环链传动,叠加履带板为载体,密闭式底部吸入自然空气进行冷却的干渣机,冷却后的热风也全部进入炉膛。履带式干渣机从2006年上半年进入中国市场,目前装机容量满足700MW。1在尾部放一台5t的卷扬机,准备一条长约100m,直径为?15的钢丝绳。图7 履带式干渣机
履带式干渣机其核心输送带由两条高强度圆环链和一组履带板组成,圆环链其抗拉强度:φ22×86为(2×)190~212kN,φ26×100为(2×)265~298kN,不同性能等级数值有差别。圆环链年拉伸率(包括拉长和磨损)约1~2.3%,双链条偏差约在25~100mm,由于履带为连续布置,当双链偏差接近半个链环时需及时对链条进行对调或者更换(湿式捞渣机由于刮板间断布置,在柔性链接时允许偏差为一个链环),否则会引起履带板变形,甚至引起设备卡塞。从尾部开始安装,先将输送链平铺在托辊上,连接钢丝绳,用卷扬机牵引移动约4m后停止,连接下一段输送链。
优缺点分析:履带干渣机采用自清扫输送带,适合大倾角输送(抬升段清扫方向和灰渣流动方向相同),降低了成本和设备高度,但限于其结构特点,不但底部有残留,而其在干渣机尾部易堆积灰渣,会造成一定污染。由于采用圆环链传动,传动力大大提高,无打滑问题,且圆环链制造工艺简单成本低,但圆环链线接触形式易磨损(图8),双链同步性差,输送系统寿命较低;采用链传动输送倾角增大,输送距离增长,但限于改向轮作用在其履带板上,大倾角输送履带板易变形产生故障,输送角度是40°。履带板采用耐热钢,导热系数高,节距为350~400mm漏灰少,但不足是冷却效果较差。干渣机按下列顺序启动:液压泵站启动——输送链、清扫链张紧——输送链驱动辊筒启动——清扫链驱动轴启动5。