![](http://img3.dns4.cn/heropic/266778/p1/20190522131549_1606_zs_sy.jpg)
![](http://img3.dns4.cn/heropic/266778/p1/20191114145849_7778_zs_sy.jpg)
![](http://img3.dns4.cn/heropic/266778/p1/20191114150043_3161_zs_sy.jpg)
![](http://img3.dns4.cn/heropic/266778/p1/20191114145850_2568_zs_sy.jpg)
![](http://img3.dns4.cn/heropic/266778/p1/20190522131532_7171_zs_sy.jpg)
![](http://img3.dns4.cn/heropic/266778/p1/20191114145850_7719_zs_sy.jpg)
![](http://img3.dns4.cn/heropic/266778/p1/20191114145849_3137_zs_sy.jpg)
经过多年的工作实践和总结,作者认为此类除尘风机价格产生异常振动的主要原因有:基础因素、安装精度不达标、风机叶轮不平衡、管道共振等。有时,振动是多个原因共同作用的,在实际工作中,应认真综合分析,才能找到解决问题的办法。试验在符合ISO3745标准的半消声室中进行,其四周墙壁及屋顶均装有消声尖劈,消声室截止频率100Hz,本底噪声为26dB(A)。下面,作者就上文所列的振动因素及其处理措施进行分析和探讨。
基础因素及其检查处理措施
除尘风机价格基础因素如基础设计、施工不规范等造成风机振动往往被忽视。其实,基础因素造成风机振动故障的事例并不少见,且其危害性很大。作为工程技术人员,首先要了解风机基础的作用。风机基础的作用有三个方面:
一是,根据生产工艺条件和设备安装要求将风机牢固地固定在一***置上;
二是,承受风机的全部重力以及工作时由于作用力产生的载荷,并将载荷均匀地传布到地基;
三是,吸收和隔离因旋转动力作用产生的振动,防止发生共振。
蜗壳优化对除尘风机价格金属叶轮稳定运行的影响
蜗壳是离心风机金属叶轮的重要组成部分。它可以通过导流与扩大压力来提高离心风机的效率。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了除尘风机价格工作的范围,影响了金属叶轮的平稳运行。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机,出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0。从而保证金属叶轮的平稳运行。
电机优化对除尘风机价格金属叶轮稳定运行的影响吸油烟机、空调系统等设备空间较小,为了节省空间,一般会使用内藏电动机设备。内藏电动机的长度、头部倾角等在一定程度上影响着风机性能和噪音。对内藏电动机的形状设计不当会增加金属叶轮内部的流动损失,从而导致噪声增大,离心风机性能降低。电动机的轴向长度和气流的排挤率呈正相关的关系。叶轮进口处的流道变窄会使前盘处脱流区域变大,从而导致金属叶轮内部损失增加。由效率曲线图可知,大流量区计算结果比实测结果偏高,小流量区计算结果比实测结果偏低,说明计算结果与实测结果吻合。因此,在设计电机形状时,应充分考虑电机形状对叶轮内部流动的影响,从而提高金属叶轮的稳定性,确保离心风机的性能。
1)除尘风机价格在进气箱出口与叶轮进口处有涡旋产生,其位置与流量大小相关,涡旋的存在导致叶轮流道发生了堵塞,是离心风机效率降低的原因之一。
2)加进气箱后,风机叶轮尾缘的“尾迹-射流”现象更加的严重,且在小流量区风机内部流场存在偏心现象。
3)加进气箱后除尘风机价格不仅效率有所降低,其全开流量与压力与无进气箱相比也有所下降,加进气箱后离心风机较优工况点向小流量区偏移,进气箱内部流场的复杂性以及出口速度的不均匀性对风机内部的流场分布产生了影响。
4)相比于无进气箱的情况下,加进气箱后,风机随流量的增加,噪声提升的更快,且在大流量区明显高于不带进气箱的噪声。
5)与实验测试结果对比分析,结果表明采用数值模拟研究风机性能是可行的。
为了提高掘进工作面离心风机导流效果, 提出对除尘风机价格圆弧形集流器加米字支撑架改造。通过建立离心风机几何模型和数值模型,并施加边界条件,利用Fluent 软件对加米字圆弧集流器和普通圆弧集流器离心风机进行了整机内部流场数值模拟, 采用Tecplot 软件进行后处理,显示同流量下离心风机的压力云图。为了提供更好的来流条件,给定较为准确的边界条件,本研究在利用Solidworks软件对风机进行三维建模时,分别将进风区域和出风区域进行延长处理,以保证进出口气体的流动充分发展。
将建立好的除尘风机价格三维模型导入ICEM 软件进行混合网格的划分。其中进出口和叶轮区域采用结构化网格,而蜗壳部分由于其内部结构复杂,尤其是电动机周围结构并非规则模型,故采用适应性较强的非结构化四面体网格,具体网格如图3 所示。综合考虑动静耦合区域对数值模拟预测结果的影响,在进行网格划分时,对边界层进行加密处理,其较低网格质量雅克比[14]在0.3 以上。为了保证数值计算结果的准确性,避免网格误差对其模拟结果造成影响,对除尘风机价格进行网格无关性验证,如表1 所示。综合考虑计算精度和计算效率可知,当网格数为25 万左右时预测结果较为合理,终确定整个计算域的网格数为2513558。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。k-ε 模型作为为普遍有效的湍流模型,能够计算大量的各种回流和薄剪切层流动,被广泛应用于各类风机的数值求解计算中。
由于有梯度扩散项,模型k-ε 方程为椭圆形方程,故其特性同其他椭圆形方程,需要边界条件:除尘风机价格出口或对称轴处k / n0和/ n0。但上述边界条件只针对高雷诺数而言,在固体壁面附近,流体粘性应力将取代湍流雷诺应力,并在临近固体壁面的粘性底层占主要作用。而多翼离心风机由于结构尺寸小、相对马赫数低,气体黏性力在流体流动过程中起重要作用,因此,在实际运用过程中,标准k-ε 模型由于未充分考虑粘性力的影响,导致计算模型出现偏差。运用Visual C 将上述修正函数编写为UDF代码,并导入Fluent 内置Calculation module。为符合实际运行状态,除尘风机价格进出口边界条件设置为压力入口和压力出口,出口压降与动能成正比,从而避免在进口和出口定义一致的速度分布[15]。进口给定质量流量,出口给定静压,壁面条件为无滑移边界,转速为1480r/min,并将流动区域分为静止域与旋转域,两者通过Interface连接,连接模型为普通连接,坐标变换为转子算法,网格连接方式为GGI。后以CFD 计算的定常结果作为初始条件,进行非定常数值计算。