棱镜折射率棱镜折射率
棱镜折射率棱镜折射率额外的性能方面的好处
尽管市面上也有着许许多多不同的技术来校正由球面表面所产生的像差,但是,这些其他的技术在成像性能和灵活性方面,都远远不及非球面透镜所能提供的。另一种广泛使用的技术包括了通过“缩小”透镜来增加f/#。角度公差通常使用准直望远镜组件进行测量,其光源系统会发射平行光。虽然这么做可以提高图像的质量,但也将减少系统中的光通量,因此,这两者之间是存在权衡关系的。
棱镜折射率棱镜折射率棱镜折射率
非球面透镜独具特色的几何特征就是其曲率半径会随着与光轴之间的距离而出现变化,相较之下,球面的半径始终都是不变的(图3)。该特殊的形状允许非球面透镜提供相较于标准球面表面而言更高的光学性能。
图3: 球面与非球面的表面轮廓比较
在过去几年,另两种使用正交项且逐渐普及的定义为Q-type非球面透镜。这类Q型非球面透镜,Qcon以及Qbfs让设计师能够透过使用正交系数更好地控制非球面透镜的优化过程,同时可降低制作非球面透镜所需的条件。
棱镜折射率棱镜折射率这就说明反射镜每平方厘米可耐受的高重复飞秒脉冲激光射入的能量密度为0.5J,或每平方厘米可耐受的大功率CW 激光射入的能量密度为100kW。如果激光束集中在更小的区域内,
则必须考虑采取相应的措施以确保整体阈值不超过的值。虽然具有一系列的其他生产规格、表面规格和材料规格,但如果了解了的光学规格,则可以显著地避免混淆。现货透镜可立即供应且其订单履行直截了当,因此许多应用可能已满足于使用现货非球面透镜。透镜、反射镜、窗口片、滤光片、偏振片、棱镜、分光镜、光栅、and 光纤共同具有各种属性,因此,了解它们之间的关系以及它们将如何影响整体系统性能,将有助于您选择的元件以集成到光学、成像或光电子应用中。
棱镜折射率棱镜折射率