本发明的发明目的在于针对现有厌氧反应器的二次颗粒污泥培养所需时间较长,甚至需要重新接种污泥,严重浪费人力、物力的问题,提供一种厌氧颗粒污泥快速培养的方法,本发明通过厌氧反应器中原有的破碎或絮化的厌氧颗粒污泥,快速再次形成高1效稳定的厌氧颗粒污泥,从而保证企业对污水的处理要求和正常生产。内循环(internalcirculation,IC)厌氧反应器成熟的颗粒污泥粒径分布是第-反应室颗粒为2。为了实现上述目的,本发明采用如下技术方案 一种厌氧颗粒污泥快速培养的方法。
厌氧污泥颗粒化是个非常复杂的过程,制成厌氧颗粒污泥受有很多因素影响,可以归纳为:环境因素、废水特征、接种污泥和操作因素。
废水的厌氧处理主要依靠水中微生物的生命活动来达到处理的目的 ,不同微生物的生长需不同的温度范围 ,根据反应器中微生物的这一特性 ,通常将反应器分为低温 (16~25℃)UASB反应器、中温 (30~40℃)UASB反应器、及高温(50~60℃)UASB反应器。但绝大多数UASB启动过程的研究都是在中温条件下进行的,也有少数低温启动的报道。
太阳能厌氧颗粒污泥循环式反应器:一种太阳能厌氧颗粒污泥循环式反应器,属于环境工程领域。其特征在于该装置包括有:进水布水室、颗粒污泥反应室、沉淀过滤室、污泥循环系统、三相分离器和太阳能集热罩;上述进水布水室设置在颗粒污泥反应室的下部,沉淀过滤室和颗粒污泥反应室为同圆心嵌套结构,太阳能集热罩设置在三相分离器的上部。与新生成的活性的厌氧污泥相比,本发明能够有效缩短制备时间,降低生成成本,提高生成效率。
吸附是部分不可逆的,该方程可较好地描述厌氧反应器内颗粒污泥对PCP的吸附量的变化规律。试验表明厌氧颗粒污泥去除PCP的主要机制是生物降解,而非吸附和挥发作用。研究结果表明厌氧颗粒污泥规模化培养机理是微生物代谢产物EPS的内因和选择压的外因共同作用,EPS中的TB-EPS影响颗粒的大小,LB-EPS影响颗粒的粘结能力和结构强度。以厌氧污泥为接种物,启动膨胀颗粒污泥床(EGSB)反应器,经 过3个月的连续运行,反应器中出现了颗粒污泥,表现出持续去除氨氮的能力,并出现了厌氧氨氧化现象.为了验证EGSB反应器中厌氧氨氧化反应的存在。