粉末冶金生胚强度
粉末冶金生胚强度的概念粉末冶金生坯强度是指冷压的粉末压坯的机械强度。粉末冶金零件生坯具有适当的强度是必要的,以便压坯从阴模中脱出和将其运送到烧结炉而不会损坏。生坯强度取决于金属粉末的种类与施加的压力。软金属的粉末、不规则颗粒形状或多孔性颗粒结构的粉末都具有较高的生坯强度。对于软金属,用较低的压力即可生产出能够进行搬运的压坯。较硬的粉末则需要较高的压力。工艺流程:前处理→热水洗→MAO→烘干技术特点:优点:1、陶瓷质感,外观暗哑,没有高光产品,手感细腻,防***。
要理解粉末冶金生坯强度,就必须知道哪种力使金属之间产生黏着。当使清洁的金属表面相互接触时,由于它们之间的接触面积小,从而它们之间的黏着力小。施加压力使接触面积增大,不管颗粒形状和表面粗糙度如何,这种接触面积大体上正比于施加的压力。对粉末冶金生坯强度的这种解释就将***放在了建立颗粒之间原子与原子的金属接触。如上所述,与球形颗粒粉末相比,不规则形状颗粒压制的压坯具有较高的生坯强度。这种较高的强度来自于粉末冶金压坯中不规则形状颗粒之间的相互联锁。对相互联锁现象的解释仍然有争议,但看起来可能是由于在由不规则颗粒压制的压坯中,在相当大程度上,相邻颗粒之间形成了较好的原子接触。近年来随着中国制造2025的提出,MIM产品市场需求日益旺盛,MIM企业如雨后春笋般的成长,MIM行业呈现出更加广阔的前景和良好的发展潜力。
粉末冶金工艺很适用于大批量生产这类的零件。它可以为各种形状复杂的零件生产设计且不浪费材料。不过,制造铁框在技术上并非易事。在早期开发中,使用传统润滑剂,诸如硬脂酸锌与EBS腊等进行过生产试验,生坯废品率高达50%。目前,有通过用温压提高生坯密度和通过采用模壁润滑减少或消除混合粉中的润滑剂的方法来提高生坯强度。经过二十多年的发展,我国MIM从业人员不仅突破了技术封堵,并且研制开发大量的MIM产品,拓展了市场。
不锈钢喂料生产之混炼时的粘结剂与粉末的选择及重要性
金属喂料的生产是金属***成形行业不可或缺的组成部分,因为工艺技术要求***原料必须为一定大小的均匀颗粒,而不能直接使用粉末。因此,喂料生产对整个行业来讲非常必要。目前大部分金属喂料都有***的供应商,有些比较有实力的大型工艺使用商也在喂料生产领域积极探索,试图降低生产成本的同时生产出适合更多适合自身生产需要的喂料。说到喂料生产就不得不提混炼,混炼是喂料生产的第1步,它是使金属粉末表面包覆一层粘结剂,使得金属粉末和粘结剂组成均匀一致混合料的过程。业内人士都知道混炼对喂料生产很重要,但却并不是所有人都能系统知道哪些因素会影响到混炼效果,今天小编就和大家一起从粉末与粘结剂配比和加料顺序的角度了解一下。对于混炼时粉末和粘结剂的加入顺序也有比较严格的规定,加料的顺序一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。
为什么要重视金属粉末与粘结剂的配比呢?这是因为喂料性能的好坏不会在混炼过程中体现出来,而是会在后续的***成形工艺中间接影响***效果和制品的***终性能。在进行混炼时就要考虑到***成形的难易程度和脱粘后的变形情况。
首先要确定金属粉末和粘结剂的搭配比例,当粘结剂比例过大时,会减小喂料的粘度,使金属粉末颗粒间的接触减弱,造成后续脱除粘结剂时变形严重或坍塌;粘结剂比例过小时,喂料的粘度虽然提高,但是容易形成空隙,不容易***,而且脱粘后制品容易裂纹或开裂。3%,如果产品要求的公差很严格,MIM烧结件就需要二次加工,如CNC,数控车等,MIM的成本也趋向于增加,需要评估比较。
对于不同的金属粉末,其混炼时选择的粘结剂种类也不同,配比自然也不同。一般要按照粘结剂和粉末密度算出其质量比,按照这个比例来进行配比。有些人还试图在喂料生产时加入表面活性剂,实验表明这会降低粘结剂对粉末的湿润性,减少粘结剂的使用量,进而提高金属喂料中金属粉末的装载量。这些强项,使其在电子数码产品、手表、手工工具、牙齿矫正支架、汽车发动机零件、电子密封件、切削工具及运动器械中得到了大量的应用。
对于混炼时粉末和粘结剂的加入顺序也有比较严格的规定,加料的顺序一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。这样能防止低熔点组元的气化或分解,分批加入金属粉可防止降温太快而导致的扭矩急增,减少设备损失。
综上,金属喂料生产的重要环节是混炼,而影响混炼效果的主要因素是粘结剂和金属粉末的配比和加入顺序,因此进行科学配比和加料对金属喂料的生产至关重要。
选择MIM技术的主要准则
日本、美国及欧洲的金属***成形协会联合发布ISO标准-ISO22068烧结金属***成形材料规范,意在于为设计与材料工程师提供用MIM工艺制造的零件规定的材料所需要的资料。关于选择MIM工艺准则,确定有下列一些主要事项需要考虑:
☆质量/大量
对于在切削加工或磨削加工中材料损耗大的零件,MIM在降低生产成本上极有效。
☆数量
模具与创建费用对于低产量是难以承受的。因此,当年产量超过20000件时,对于MIM合适。
☆材料
对于像钛、不锈钢及镍合金之类难切削加工的材料设计的零件,MIM***有吸引力。
☆复杂性
MIM工艺适合制造几何形状复杂的以及在切削加工中需要转换位置的多轴零件。
☆使用性能
如果使用性能很重要,则MIM的高密度形成的性能经常都有竞争力。
☆表面粗糙度
表面粗糙度反应了粉末颗粒的大小,然而不像其他竞争的工艺,可控的织构可能对成本没有什么影响。
☆公差
如果要求的公差紧密时,由于需要后续加工,MIM的成本趋向于增加,烧结件的公差大概在±0.3%。
☆组合
为了节省库存与组装费用,当讲多个零件团结为一个零件时,可以受益。
☆缺陷
必须使MIM固有的缺陷处于非关键位置,或制造成形后除去例如浇口印迹、提模杆标记或接合线等。
☆新型组合材料
MIM可制造出用传统工艺难以制造的新型组合材料,例如叠片的、两种材料结构的或耐磨耗用的混合的金属-陶瓷材料。
LIGA工艺制造塑料消失模具的两种方法
LIGA工艺制造塑料消失模具有两种方法:
一种工艺是用模具成型PMMA塑料模芯,将PMMA塑料模芯嵌入模架直接进行金属***成型,PMMA塑料模芯与MIM零件毛坯整体从模架中脱出,MIM零件毛坯留在塑料模芯中直接脱脂、烧结,这成为一步Fu制工艺。
另一种工艺是利用电铸工艺在PMMA塑料件表面沉积一层金属镍,而后将PMMA塑料与镍壳剥离,再将镍壳嵌入模架制程金属模具成型MIM零件毛坯。这成为两步fu制工艺。
一步fu制工艺成型的零件精度较高,并且解决了零件的脱模及后续操作等困难,但成本较高;两步fu制工艺成型的零件精度有所降低,适合批量生产,但存在零件的脱模及后续操作困难。