深圳市科葩信息技术有限公司专注于人脸识别技术与产品的研发、设计、生产、销售和运营服务于一体的综合性高科技企业。科葩是人脸识别产品设备应用系统解决方案供应商,主营人脸识别门禁、人脸识别闸机、人脸识别访客终端、人脸识别核验终端等人脸识别产品设备研发生产销售以及基于人脸识别系统方案的增值服务运营。
访客管理子系统精准控制访问权限
相较于传统的安全通行证,慧眼人脸识别系统下访客管理子系统的优点在于:不可窃取,无法借用和复制,就是说,脸部识别是无法被效仿的,在未来,人脸识别也会成为未来最可靠的通行证。
科葩访客子系统主要有v预约、访客数据自动下发功能,针对不同地点的安保等级,物业还可以选择安保再确认、远程开门等功能,全程数字化管理,为访客、被访公司、物业三方提升效率,提升用户体验。
人脸通行子系统更准确高效
传统通行系统具有人卡不一、卡片丢失、卡片易被破解复制、信息准确率没有保障等问题,而慧眼人脸识别系统下的人脸通行子系统不仅可以解放双手、速度快捷地完成通行管理任务,还能够明确责任、准确防伪,保证本人通行、不可替代的1性。
动态布控子系统可事先预警
科葩慧眼人脸识别系统下的动态布控子系统能高速抓拍,同时采集比对15张人脸,主要有陌生人预警、VIP迎宾等功能。
出现安全问题,传统摄像头只能事后排查,而科葩动态布控子系统能做到陌生人预警,黑名单报警等功能,只要有非授权人员或黑名单人员出现,后台即会发出预警,让安保人员能及时排查,防止安全事件发生。
VIP迎宾功能可以设置VIP名单,当重要宾客到访时,大屏幕上会弹出迎宾画面,为重要嘉宾带来尊贵的体验。
不得不承认,人脸识别技术比现有的基于ID入口系统更快、更强大、更安全。凭借其灵活的设计, 科葩慧眼人脸识别系统还为开发和整合更多的应用程序和服务提供了充足的空间,以满足您未来的安全访问和管理需求。
科葩X-Face慧眼人脸识别,助力行业应用智能化变革落地!
------------------------------------------------------------------------------
1. 基于局部特征的人脸识别方法
(1)结构匹配的方法
早期的人脸识别方法有检测人脸的眼睛,眉毛,鼻子和嘴巴等各种几何特征。特征点的位置,距离和角度等的各个特征和相互的联系就用作人脸识别的描述符。这种方法的主要缺点在于识别效果取决于特征定位算法的准确性。另外一种结构匹配的方法是从人脸边缘图中提取一种线性边缘图(Line edge map简称LEM)(来进行特征提取。它是基于结合模板匹配和几何特征匹配来进行的。先利用Sobel边缘算子来提取人脸二值图象,然后用人脸几何特征的提取方法来量度人脸之间的相似性。这种方法的优点在于光照不变性,存储量小和基于模板匹配的高识别率;主要缺点在于对于人脸面部的大的表情变化很敏感。
(2)隐马尔可夫模型(Hidden Markov Model,简称HMM)的方法
隐马尔可夫模型是采用概率统计的方法描述时变信号。 HMM原来是应用在语音识别领域的,并取得了相当的成功,但是由于语音信号是一维信号,而图像是二维信号,为了把HMM应用于二维的图像,就要在图像上取一个采样窗口,该窗口的宽度就是图像的宽度,高度可能只有几个像素,然后将在图像上由上至下滑动,相邻窗口之间允许重叠,这样就把人脸垂直分成了五个区域:前额,眼睛,鼻子,嘴巴,下领,然后用一个五状态的HMM模型来表达人脸。基于离散马尔可夫模型和奇异值特征的人脸检测方法.其实质是将奇异值特征转化为向量序列.再利用HMM对其进行识别,这种方法鲁棒性较好,对不同角度和不同光照条件的人脸图像都可以取得较好的识别效果。
(3)弹性图匹配(Elastic Bunch Graph Matching简称EBGM)的方法
该方法采用网格作为模板,将图像间的比较变为网格间的比较。使用一种基于动态链接结构的弹性匹配法来定位人脸,并根据人脸数据库进行匹配识别。将人脸用格状的稀疏图形描述(图1-3),图中的节点用图像位置的Gabor小波分解得到的特征向量标记,记录人脸在该顶点位置的分布信息,图的边用连接节点的距离向量标记,表示拓扑连接关系。匹配时,首先寻找与输入图像的最相似的模型图,再对图中的每个节点位置进行最佳匹配,寻找最近的己知图形。弹性匹配方法提取了人脸图像的局部特征,保留了人脸图像的空间信息,可以在一定程度上容忍人脸从三维到二维投影引起的变形。因此,对人脸变形和光照变化等具有较好的适应性,整体识别性能优于特征脸法。但是计算量大,识别速度慢。