深圳市科葩信息技术有限公司专注于人脸识别技术与产品的研发、设计、生产、销售和运营服务于一体的综合性高科技企业。科葩是人脸识别产品设备应用系统解决方案供应商,主营人脸识别门禁、人脸识别闸机、人脸识别访客终端、人脸识别核验终端等人脸识别产品设备研发生产销售以及基于人脸识别系统方案的增值服务运营。
访客管理子系统精准控制访问权限
相较于传统的安全通行证,慧眼人脸识别系统下访客管理子系统的优点在于:不可***,无法借用和***,就是说,脸部识别是无法被效仿的,在未来,人脸识别也会成为未来***可靠的通行证。
科葩访客子系统主要有v预约、访客数据自动下发功能,针对不同地点的安保等级,物业还可以选择安保再确认、远程开门等功能,全程数字化管理,为访客、被访公司、物业三方提升效率,提升用户体验。
人脸通行子系统更准确***
传统通行系统具有人卡不一、卡片丢失、卡片易被******、信息准确率没有保障等问题,而慧眼人脸识别系统下的人脸通行子系统不仅可以解放双手、速度快捷地完成通行管理任务,还能够明确责任、准确防伪,保证本人通行、不可替代的1性。
动态布控子系统可事先预警
科葩慧眼人脸识别系统下的动态布控子系统能高速抓拍,同时采集比对15张人脸,主要有陌生人预警、VIP迎宾等功能。
出现安全问题,传统摄像头只能事后排查,而科葩动态布控子系统能做到陌生人预警,黑名单报警等功能,只要有非***人员或黑名单人员出现,后台即会发出预警,让安保人员能及时排查,防止安全事件发生。
VIP迎宾功能可以设置VIP名单,当重要宾客到访时,大屏幕上会弹出迎宾画面,为重要嘉宾带来尊贵的体验。
不得不承认,人脸识别技术比现有的基于ID入口系统更快、更强大、更安全。凭借其灵活的设计, 科葩慧眼人脸识别系统还为开发和整合更多的应用程序和服务提供了充足的空间,以满足您未来的安全访问和管理需求。
科葩***人脸识别设备与应用解决方案提供商 科葩X-Face慧眼人脸识别,助力行业应用智能化变革落地!
------------------------------------------------------------------------------
基于相关匹配的方法
基于相关匹配的方法包括模板匹配法和等强度线方法。
①模板匹配法:Poggio和Brunelli [10]专门比较了基于几何特征的人脸识别方法和基于模板匹配的人脸识别方法,并得出结论:基于几何特征的人脸识别方法具有识别速度快和内存要求小的优点,但在识别率上模板匹配要优于基于几何特征的识别方法。
②等强度线法:等强度线利用灰度图像的多级灰度值的等强度线作为特征进行两幅人脸图像的匹配识别。等强度曲线反映了人脸的凸凹信息。这些等强度线法必须在背景与头发均为黑色,表面光照均匀的前提下才能求出符合人脸真实形状的等强度线。
3)基于子空间方法
常用的线性子空间方法有:本征子空间、区别子空间、***分量子空间等。此外,还有局部特征分析法、因子分析法等。这些方法也分别被扩展到混合线性子空间和非线性子空间。
Turk等 [11]采用本征脸( Eigenfaces)方法实现人脸识别。由于每个本征矢量的图像形式类似于人脸,所以称本征脸。对原始图像和重构图像的差分图像再次进行K-L变换,得到二阶本征空间,又称二阶本征脸 [12]。Pentland等 [13]提出对于眼、鼻和嘴等特征分别建立一个本征子空间,并联合本征脸子空间的方法获得了好的识别结果。Shan等 [14]采用特定人的本征空间法获得了好于本征脸方法的识别结果。Albert等 [15]提出了TPCA(Topological PCA)方法,识别率有所提高。Penev等 [16]提出的局部特征分析(LFA Local Feature Analysis)法的识别效果好于本征脸方法。当每个人有多个样本图像时,本征空间法没有考虑样本类别间的信息,因此,基于线性区别分析(LDA Linear Discriminant Analysis ),Belhumeur等 [17]提出了Fisherfaces方法,获得了较好的识别结果。Bartlett等 [18]采用***分量分析(ICA,Independent Component Analysis)的方法识别人脸,获得了比PCA方法更好的识别效果。
4)基于统计的识别方法
该类方法包括有:KL算法、奇异值分解(***)、隐马尔可夫(HMM)法。
①KL变换:将人脸图像按行(列)展开所形成的一个高维向量看作是一种随机向量,因此采用K-L变换获得其正交K-L基底,对应其中较大特征值基底具有与人脸相似的形状。国外,在用静态图像或视频图像做人脸识别的领域中,比较有影响的有MIT的Media实验室的Pentland小组,他们主要是用基于KL变换的本征空间的特征提取法,名为“本征脸( EIgenface) [19]。
②隐马尔可夫模型:剑桥大学的Samaria和Fallside [20]对多个样本图像的空间序列训练出一个HMM模型,它的参数就是特征值;基于人脸从上到下、从左到右的结构特征;Samatia等 [21]首先将1-D HMM和2-D Pseudo HMM用于人脸识别。Kohir等 [22]采用低频DCT系数作为观察矢量获得了好的识别效果,如图2(a)所示。Eickeler等 [23]采用2-D Pseudo HMM识别DCT压缩的JPEG图像中的人脸图像;Nefian等采用嵌入式HMM识别人脸 [24],如图2(b)所示。后来集成coupled HMM和HMM通过对超状态和各嵌入状态采用不同的模型构成混合系统结构 [25]。
基于HMM的人脸识别方法具有以下优点:***,能够允许人脸有表情变化,较大的头部转动;第二,扩容性好.即增加新样本不需要对所有的样本进行训练;第三,较高的识别率。