刃口钝化的刀具切削刃描摹上的微观缺陷大幅缩减,刃口崩坏的几率大幅下降,能够延常刀具使用寿命50%-400%。因此,开展刀具刃口钝化的研讨对进步我国刀具产品的质量具有十分重要的含义。现在,国外的刀具制造厂已广泛选用刃口钝化技能,从国外引入的数控机床或者生产线所使用的刀具,yg8硬质合金刀条型号,其刃口已全部经过钝化处理,不只进步了工件外表质量,下降了刀具成本,一起也带来了巨大的经济效益。刀具钝化办法有振荡钝化、磨粒尼龙刷法钝化、磁化法钝化和立式旋转钝化等,立式旋转钝化进程实际上是涣散固体颗粒对刀具刃口效果的进程。
含磨粒的刀具刃口钝化法具有重复性好、质量高和成本低一级特色,是现在首要选用的刀具刃口钝化办法,通过刀具和磨粒的相对运动实现刃口钝化,磨粒多选用金刚石、CBN和碳化硅颗粒等。现在,关于磨粒效果机理研讨的比较少,首要有冲击单颗磨粒、冲击多磨粒磨损、刀具和切屑间存在磨粒、磨料水射流和半固着磨粒等,***研讨磨粒类型、磨粒尺寸和冲击速度对外表的影响规则,而关于涣散磨粒对工件外表效果机理的研讨更少。杨成虎研讨了多粒子重复冲击关于Cr12钢的冲蚀磨损,选用实验与有限元模仿相结合的办法验证了有限元模型能够实在有效地模仿出冲蚀磨损的实际进程。利用非线性ABAQUS有限元软件研讨了磨粒冲蚀速率、冲蚀角和磨粒粒径对刀圈资料(H13钢)冲蚀磨损行为及残余应力的影响规则。张伟等运用ABAQUS软件树立了塑性资料微切削进程的有限元模型,研讨了磨粒冲蚀角度以及冲蚀速度对磨损率的影响,断定了微切削模型的适用冲蚀角范围。
为了取得合适的钝化刃口形状,进步切削进程的稳定性,需求研讨涣散固体磨粒对刀具刃口的钝化机理。本文选用ABAQUS有限元软件树立了单磨粒和多磨粒对刀具刃口效果的防真模型,研讨了单磨粒和多磨粒对刃口效果的能量、刃口形变、位移和磨粒速度改变等的影响规则,关于从微观角度知道磨粒钝化效果具有一定价值,为研讨刀具刃口钝化机理提供依据。
1 单磨粒钝化刃口防真模型的树立
依据立式旋转钝化法的基本特色,刀具在涣散固体磨粒中进行两级行星运动,刀具刃口与涣散固体磨粒不断进行磕碰冲击,使得刀具刃口钝化。刀具沿着一定的轨迹进行运动,而涣散固体磨粒的运动规则相对随机。因此,涣散固体磨粒对刀具刃口的钝化进程是十分复杂的。
作为非线性有限元处理工具,ABAQUS在处理复杂问题和模仿高度非线性问题上有极大优势。选用ABAQUS软件树立磨粒对刀具刃口钝化的防真模型。
①刀具钝化模型的简化:因为磨粒相关于刀具刃口要小得多,能够将刀具刃口看作无限大,底端固定不动,粒子向刀具刃口冲击。
②磨粒:磨粒选用80目碳化硅,颗粒形状设为球形。
③刀具:选用硬质合金刀具,刀具刃口尺寸设为0.5mm×0.25mm×0.1mm。
④网格划分:将刀具刃口与磨粒触摸部分的网格区域划分得略细,磨粒的母线布置种子数目为10,挑选显式线性三维应力单元C3D4。刀具刃口种子数目分别设为10和25,磨粒单元形状为Tet(四面体),完成网格划分。
⑤防真设置:触摸属性为Contact,冲击速度设置为100m/s,核算剖析步时刻为5E-5s,设置20个剖析步,选用job模块进行求解。
2 单磨粒钝化刃口防真结果
(1)刀具刃口应力改变规则
单磨粒对刀具刃口效果的应力矢量云图见图1。由图可知,碳化硅磨粒在冲击刀具刃口时,刀具刃口外表会发生微小的变形,刃口遭到的应力巨细在触摸区以圆弧状向四周扩展,一起应力以触摸点为中心向四周逐步衰减。刃口被冲击的外表略微下凹,就像一个小球在地上砸出了一个坑相同。
图1 单磨粒对刀具刃口效果的应力散布
(2)刀具刃口的冲击区域与应力的关系
刀具刃口的冲击区域与应力的关系见图2。在刀具刃口冲击区域内,越靠近磨粒冲击点中心,刀具刃口应力越大;越远离磨粒与刃口的冲击区域,刀具刃口所受的应力越小。
(3)刀具刃口的位移改变规则
单磨粒对刀具刃口效果的位移曲线见图3。在刀具刃口钝化进程中,碳化硅磨粒与刃口的冲击十分时间短。当碳化硅磨粒从0时刻开端运动且当时刻到达7.5E-06s时,碳化硅磨粒的位移到达蕞大。尔后,磨粒开端反弹。
图2 到效果点中心的间隔所对应的应力关系
图3 刀具刃口的位移改变规则
(4)单磨粒速度改变规则
磨粒在与刃口触摸时,与刃口之间的效果速度逐步减小,随后反弹(见图4)。
图4 磨粒速度改变规则
3 多磨粒防真模型的树立及结果
选用三颗磨粒重复冲击,研讨多磨粒对刀具刃口的钝化。边界条件与资料参数及边界的界定与单磨粒模型共同。冲击速度为300m/s,多磨粒对刀具刃口钝化的防真模型见图5。
图5 多磨粒对刀具刃口效果的防真模型
(1)刀具刃口的应力散布
图6为地一颗磨粒对刀具刃口冲击的应力云图。由图可知,在地一剖析步t=2.5003E-06s时,刀具刃口无太大改变,受磨粒冲击的中心遭到的应力蕞大,蕞大应力值为2238MP;当第二颗磨粒对同一位置进行冲击后,刀具刃口所受应力区域显着增大,所产生的蕞大应力值为2341Mpa;当第三颗磨粒冲击刀具刃口时,刀具刃口遭到的应力效果区域进一步增大,蕞大应力值为2440Mpa,较前两次冲击有所进步。
图6 地一颗磨粒冲击刀具刃口的应力散布
(2)磨粒速度改变规则
多磨粒冲击刀具刃口的速度改变规则见图7。在0s时,地一颗磨粒开端与刀具刃口磕碰,随后磨粒速度开端下降,直至越过零点成为负值。磨粒速度为负是因为磨粒发生了回弹,磨粒对刀具刃口产生磨损。在1.0E-5s、2.0E-5s时,第二颗磨粒、第三颗磨粒分别与刀具刃口效果,效果方式和地一颗磨粒相同。
图7 三颗碳化硅磨粒速度改变规则
(3)刀具刃口的位移改变规则
刀具刃口在三颗磨粒冲击下的位移曲线见图8。地一颗碳化硅磨粒在对刀具刃口冲击后会构成一个***的冲蚀坑,接着第二颗、第三颗磨粒重复冲击,冲蚀坑不断增大,多磨粒的冲击会使冲蚀坑越来越大。
图8 刀具刃口遭到重复冲击的位移改变
(4)多磨粒对刀具刃口效果的能量改变规则
刀具刃口钝化的进程也是能量交换的进程。因为刀具刃口与涣散固体磨粒不断地冲击磕碰,在钝化进程中发生了磨粒动能和刀具刃口内能的交换,其能量改变见图9。
图9 刀具刃口钝化的能量改变
由图9可知,碳化硅磨粒在触摸刀具刃口后速度开端下降,约在2E-05s时到达蕞低。磨粒的动能因为速度的减小而减小,大约在2E-05s时到达蕞低。一起,刀具刃口内能因为磨粒的冲击呈现出接连上升趋势,二者能量曲线基本对称,磨粒所消耗的动能基本转化成为刀具刃口内能,使得刀具刃口进行钝化。
小结
选用ABAQUS有限元剖析软件树立了磨粒对刀具刃口冲击的防真模型,研讨了磨粒冲击刀具刃口时磨粒速度、刃口应力、刃口位移和能量等的改变规则。首要定论如下:
(1)当单磨粒对刀具刃口进行钝化时,刀具刃口的应力在冲击区域以圆弧状向四周扩展。碳化硅磨粒与刃口的冲击十分时间短,磨粒从零时刻开端运动,当时刻到达7.5E-06s时,碳化硅磨粒的位移到达蕞大,尔后,磨粒开端反弹。
(2)当多碳化硅磨粒对刀具刃口进行不断冲击时,受力区域不断增大,刀具刃口所受应力增大,冲蚀坑不断增大。
PCD刀具加工有色金属是大规模工业生产的,不同的铝合金其加工效果也不尽相同。PCD刀具一般采用锋利切削刃,在刀具使用初期出现表面质量差的现象,随着刀具使用时间的增加,其加工质量越来越好,这是由于PCD刀具在切削过程中锋利刃口的逐渐钝化所致。在切削加工中,刃口钝化是影响刀具性能和寿命的重要因素。刀具经刃磨后刃口会存在毛刺和微缺口,这种微缺口会影响刀具寿命和加工工件表面质量。刃口钝化能有效去除小的毛刺和微缺口,得到光滑均匀的切削刃,从而提高工件表面质量。刃口光滑性的提高能有效预防积屑瘤的产生。钝化能够提高和改善刀具的抗拉强度和刃口韧性,增加刀具强度,从而提高刀具寿命,减小因峰刃缺陷而引起的初期不稳定磨损。刀具在涂层之前需经过钝化处理,提高刀具表面光洁度,从而使涂层牢固。
图1 刀具钝化实验装置
目前关于钝化的研究主要针对硬质合金,而对于PCD刀具钝化的研究较少。本文探索一种PCD刀具的钝化方法及其对铝合金加工表面粗糙度的影响。通过国产小型钝化机对PCD刀片进行钝化,并研究了钝化加工参数对钝化后刃口的影响,为选择合理的钝化加工参数提供参考。通过单因素试验探究了钝化对表面粗糙度的影响,研究分析了不同切削参数下钝化刀具对车削1060铝合金表面粗糙的影响规律。
刃口钝化试验研究
如图1所示,本试验钝化设备为2MQ6712D小型可转位刀片刃口钝化机,用含金刚石磨料的盘刷对PCD刀具进行钝化。采用特殊的装夹方式进行钝化,可以使钝化后的刃口成倒圆形。钝化后的刀片垂直于切削刃磨一个端面,从图中可以看出钝化后的刃口呈倒圆形(见图2)。
图2 钝化后切削刃的剖面图
小型可转位刀片刃口钝化机主要利用刀具与磨料刷的相对运动形成磨损,从而达到钝化的目的。磨料刷对切削刃的磨损形式主要为磨料磨损,去除过程中切削刃的加工质量和加工效率取决于尼龙丝对切削刃的碰撞作用。随着转速的提高和磨料颗粒的增大,磨料颗粒的动能增大,碰撞过程越剧烈。但过大的转速和磨料颗粒在钝化过程中会导致切削刃崩刃或者崩块,降低了切削刃的表面质量。通过试验发现,选择合适的转速和磨料颗粒在保证加工效率的同时有利于提高切削刃的钝化质量。因此本试验选用丝径4mm含800目金刚石磨料的磨料刷,转速800r/min,切削刃和磨料刷接触长度为2mm,在该条件下能够得到较好表面质量的切削刃。图2为切削刃钝化后的微观形貌,从图中可以看出选择上述钝化加工参数得到的钝化后的刃口很光滑均匀,随着钝化时间的改变可以得到不同大小的钝化半径。
通过图2和图3可以看出,利用国产小型可转位刀片刃口钝化机,采用特殊的装夹方式并选用合理的钝化加工参数对PCD刀片进行钝化,可以得到光滑均匀的倒圆刃。
图3 钝化后的切削刃的形貌
单因素切削试验
在相同的切削条件下,采用相同切削参数对比钝化与未钝化的PCD刀具车削1060铝合金材料对表面粗糙度的影响规律。为了进一步研究切削深度对钝化刀具所形成表面粗糙度的影响,选用较小切削深度参数分析切削深度对表面粗糙度的影响。
1.试验条件
机床参数:SK50P/750型数控车床;工件材料:1060铝合金,工件尺寸Φ70mm×250mm圆棒;刀杆型号:SDJCR2525M11;刀片参数:PCD刀片型号DCMW11T304,粒度约10μm。测量仪器:车削后工件的表面粗糙度的测量采用触针式表面粗糙度仪(时代TR200),取样长度2.5mm,取样数量5,在不同位置取5次样计算平均值。PCD刀具的主要几何参数如表1所示。
表1 PCD车刀的主要几何参数
2.试验方案
采用钝化和未钝化两种PCD车刀车削工件外圆,选取的刀具钝化值约为18μm。冷却方式为乳化液冷却,切削参数及测量结果如表2和表3所示,钝化和未钝化刀具均采用此组参数。
试验结果分析
1.不同切削参数下PCD刀具钝化对表面粗糙度的影响分析
表2 切削参数及实验结果
根据表2中所得的试验结果绘制各参数对表面粗糙度影响图,图4为钝化和未钝化两种刀具切削速度对表面粗糙度的影响,可见,钝化刀具加工工件表面粗糙度总体低于未钝化刀具。钝化和未钝化刀具加工工件表面粗糙度都随切削速度的增大而增大,但增大幅度很小。
图4 钝化和未钝化刀具切削速度对表面粗糙度的影响
图5为钝化和未钝化两种刀具进给量对表面粗糙度的影响。从图中可以看出,钝化和未钝化刀具随着进给量的增加表面粗糙度呈增大趋势,且增大的幅度较大。在进给量较小时,钝化和未钝化刀具车削所形成表面粗糙度区别不大;随着进给量的增大,钝化对表面粗糙度的影响越来越明显,在进给较大时钝化刀具车削所形成表面粗糙度明显小于未钝化刀具。
图5 钝化和未钝化两种刀具进给量对表面粗糙度的影响
图6为钝化和未钝化两种刀具切削深度对表面粗糙度的影响。从图中可以看出,钝化刀具加工工件表面粗糙度总体低于未钝化刀具。在0.1-06mm切削深度范围内,切削深度对表面粗糙度影响不大。
图6 钝化和未钝化两种刀具切削深度对表面粗糙度的影响
由上述分析可知,PCD刀具车削1060铝合金时进给量对表面粗糙度的影响,速度和切削深度对表面粗糙度的影响较小。在不同切削参数下钝化后的刀具所形成表面粗糙度低于未钝化刀具,随着进给量的增大钝化对表面粗糙度的影响越来越大。这是由于钝化后的刀具在刃口处形成了一个光滑均匀的倒圆刃,消除了刃磨后的微缺口,同时由于钝化半径的存在对已加工表面起挤压修光作用,因此钝化后的刀具车削所形成的工件表面质量更高。
2.钝化刀具在小切削深度时对表面粗糙度的影响
通过分析可知,在所选的切削深度范围内,切削深度对表面粗糙度基本没有影响。为了进一步研究切削深度对钝化刀具车削形成的表面粗糙度的影响规律,采用小切削深度,研究钝化对车削所形成的表面粗糙度的影响。测量结果见表3。
表3 小切削深度参数对表面粗糙度的影响
根据表3中实验结果绘制切削深度对表面粗糙度影响规律如图7所示。从图中可以看出,在切削深度为20μm时,钝化刀具所形成表面粗糙度比同一条件下其他切削深度所形成的表面粗糙度低,未钝化刀具没有此现象。可见,当切削深度约为20μm时,钝化半径对表面粗糙度的影响比较明显。
图7 小切削深度对表面粗糙度的影响
小结
(1)采用特殊的装夹方式,在合理的加工参数下通过国产小型钝化机作钝化处理后,可以得到光滑均匀的正倒圆切削刃。
(2)PCD刀具车削1060铝合金时,进给量对表面粗糙度的影响,切削速度和切削深度对表面粗糙度的影响较小。在相同切削条件下,使用相同切削参数钝化刀具车削1060铝合金所获得的表面粗糙度低于未钝化刀具。随着进给量的增大,钝化对表面粗糙度的影响越来越大,在进给量较大时钝化刀具车削所形成表面粗糙度明显小于未钝化刀具。刀具经钝化后消除了刃口毛刺和微刃口,同时在刃口处形成一个倒圆形刃口半径。刃口半径的存在对工件已加工表面起到了挤压修光作用,提高了工件表面质量。
(3)钝化刀具在切削深度为20μm时加工获得的表面粗糙度低于其他切削深度,钝化对表面粗糙度的影响比较明显。
一、高温合金的概念、原理和分类
高温合金一般是指能在600~1200℃的高温下抗痒化、抗腐蚀、抗蠕变,并能在较高的机械应力效果下长期作业的合金资料。
高温合金强调的不是耐受温度指标,耐受温度比高温合金高的资料有很多,比如难熔合金、陶瓷及碳碳复合资料等。高温合金***底子的特性在于必定温度下所具有的高强度。以一般的修建用钢材为例,它在室温下强度很高,但在修建***焚烧时强度会急剧下降,从而导致修建坍塌。高温合金的长处是,在600~1200℃的高温下,它仍然能坚持极高的强度和硬度以接受较高的载荷。因而俄罗斯将其称为热强合金,而欧美称之为超合金(superalloy)。
一般钢材含有十多种化学元素,而高温合金一般含有超越30-40种元素,高温合金之所以能在高温下坚持较高的强度和硬度首要原因在于这些元素在安排中发挥着强化金属功能的效果。
高温合金的分类有多种:1)按制造工艺分为变形高温合金、铸造高温合金和粉末高温冶金三类。2)按合金的首要元素分为铁基高温合金、镍基高温合金和钴基高温合金三类。3)按强化办法分为固溶强化、时效强化、氧化物弥散强化和晶界强化等。
以工艺分类来看,变形高温合金运用规划***广,占比达70%,其次是铸造高温合金,占比20%。以合金首要元素来看,镍基高温合金运用规划***广,占比达80%,其次为镍-铁基,占比14.3%,钴基占比***少,占比5.7%。
二、高温合金展开进程及概略
高温合金***早诞生于20世纪初期的美国,被用作车站的防腐支架。从***开端,高温合金的研发进入了高速展开时期,镍基高温合金、钴基高温合金、铁基高温合金纷纷研发成功,并大量运用。现在镍基高温合金是现代航空发起机、航天器和火箭发起机以及舰船和工业燃气轮机的要害热端部件资料(如涡轮叶片、导向器叶片、涡轮盘、焚烧室等),也是核反应堆、化工设备、煤转化技能等方面需求的重要高温结构资料。
高温合金的展开首要阅历了几个阶段:二十世纪40时代以前提出概念,40-50时代实现在喷气发起机的运用,50-60时代在真空熔炼技能取得重大进展,60-70时代会集在合金化方面,70时代后首要在工艺研讨方面,定向凝结、单晶合金、粉末冶金、机械合金化和陶瓷过滤等新工艺成为高温合金展开的首要动力,其间定向凝结工艺制备的单晶合金尤为重要,在航空发起机涡轮叶片中运用尤为广泛。二十世纪80时代以来,国内外广泛展开数值模仿研讨,yg8硬质合金切割混凝土,取得了重要进展,并在此基础上展开了显微安排及冶金缺点猜测研讨。
三、镍基高温合金
在整个高温合金领域中,镍基高温合金占有特别重要的地位,与铁基和钴基合金比较,镍基合金具有更好的高温功能、良好的抗痒化和抗腐蚀功能。镍基高温合金是高温合金中运用***广、高温强度蕞高的一类合金。其首要原因,一是镍基合金中能够溶解较多合金元素,且能坚持较好的安排安稳性;二是能够构成共格有序的A3B型金属间化合物[Ni3(Al,Ti)]相作为强化相,使合金得到有用强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基高温合金具有比铁基高温合金更好的抗痒化和抗燃气腐蚀才能。能够说,镍基高温合金的展开决定了航空涡轮发起机的展开,也决定了航空工业的展开。选用定向凝结技能制备出的镍基单晶合金,其运用温度已接近合金熔点的90%,成为今世***航空发起机热端部件不行替代的重要结构资料。
镍基高温合金含有十多种元素,增加合金元素对高温合金的功能起要害的效果。以铸造镍基高温合金为例,铸造镍基高温合金以γ相为基体,增加铝、钛、铌、钽等构成γ’相进行强化,γ’相数量较多,有的合金高达60%;参加钴元素能前进γ’相溶解温度,前进合金的运用温度;钼、钨、铬具有强化固溶体的效果,铬、钼、钽还能构成一系列对晶界发生强化效果的碳化物;铝、铬有助于抗痒化才能,但铬下降γ’相的溶解度和高温强度,因而铬含量应低些;铪改进合金中温塑性和强度;为了强化晶界,增加适量的硼、锆等元素。研讨标明,GMR235铸态合金的含碳量为0.18%时,高温耐久寿数和抗拉强度蕞大,且具有较好的塑性,增加硼和锆的合金耐久性明显改进,合金的枝晶距离削减,碳化物的析出量削减且碳化物颗粒细化,从而改进各方面功能。
镍基高温合金是20世纪30时代后期开端研发的。英国于1941年首先出产出镍基高温合金Nimonic75;为了前进蠕变性又增加了铝,研发出Nimonic80。美国于40时代中期,苏联于40时代后期,我国于50时代中期也研发出镍基合金。
镍基合金的展开包含两个方面:合金成分的改进和出产工艺的改造。50时代初,真空熔炼技能的展开,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50时代后期,因为涡轮叶片作业温度的前进,要求合金有更高的高温温度,可是合金的强度高了,就难以变形,乃至不能变形,于是选用熔模精细铸造工艺,展开出一系列具有良好高温强度的铸造合金。60时代中期展开出功能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满意舰船和工业燃气轮机的需求,60时代以来还展开出一批抗热腐蚀功能较好、安排安稳的高铬镍基合金。在从40时代初到70时代末大约40年的时间内,镍基合金的作业温度从700℃前进到1100℃,平均每年前进10°C左右。
镍基高温合金按照制造工艺,可分为变形高温合金、铸造高温合金、粉末冶金高温合金。
3.1 变形高温合金
变形高温合金是高温合金中运用***广的一类,占比到达70%。变形高温合金首要选用常规的锻、轧和揉捏等冷、热变形手段加工成材。我国镍基变形高温合金以拼音字母GH加序号表明,如GH4169、GH141等。
变形高温合金塑性较低,变形抗力大,运用一般的热加工手段变形有必定困难,因而需求采纳钢锭直接轧制、钢锭包套直接轧制和包套墩饼等新工艺来加工,也选用加镁微合金化和弯曲晶界热处理工艺来前进塑性。
变形高温合金在航空发起机中至今仍然是首要用材。其间GH4169在我国航空发起机中已得到广泛运用,被称为高温合金中的***。其材质水平和加工工艺水平近年来得到明显前进。GH4169合金的冶金产品有不同标准的锻棒、热轧棒、冷拉棒、板、带、丝、管和锻件,yg8硬质合金加工什么材料,制造的零件有各类盘、转子、环、机匣、轴、紧固件、弹性元件、阻尼元件等。
3.2 铸造高温合金
跟着运用温度和强度的前进,高温合金的合金化程度越来越高,抚州yg8硬质合金,热加工成形越来越困难,必须选用铸造工艺进行出产。另外,选用冷却技能的空心叶片的内部杂乱型腔,只能选用精细铸造工艺才能出产,因而镍基铸造高温合金在实际出产运用中不行缺少。铸造高温合金运用也较为广泛,占比约20%。国内的铸造高温合金以“K”加序号表明,如K1、K2等。
按结晶办法,铸造高温合金又能够分为多晶铸造高温合金、定向凝结铸造高温合金、定向共晶铸造高温合金和单晶铸造高温合金等4种类型。铸造高温合金的特点是:1)具有更宽的成分规划。因为不用统筹变形加工功能,合金的规划能够会集考虑优化其运用功能。2)具有更广阔的运用领域。因为铸造办法具有的特别长处,可依据零件的运用需求,规划、制造出近终型或无余量的具有任意杂乱结构和形状的高温合金铸件。
yg8硬质合金切割混凝土-数控刀具-抚州yg8硬质合金由常州昂迈工具有限公司提供。常州昂迈工具有限公司(www.onmy-)是江苏 常州 ,刀具、夹具的翘楚,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在昂迈工具***携全体员工热情欢迎各界人士垂询洽谈,共创昂迈工具更加美好的未来。