DBF1G31-BK PEEK 美国苏威 ******
美国苏威PEEK DBF1G31-BK产品介绍:
DBF1G31-BK材料的连续使用温度极高,(大约260度),还具 有极高的刚度和硬度,以及独有的高抗拉强度和***强度。另外其耐热不变形性能与化学稳定性俱佳。当温度达260度之前该材料都具有***的介电性能,并能抵抗能量射线照射。PEEK具有***的综合性能,机械性能好,耐高温,耐化学性能优越,使之成为***通用的***塑料。 主要特性:空气中***大允许工作温度非常高(可260度持续工作,短时可达310度),机械强度、 刚性和硬度高、耐高温、***的耐化学性和抗水解能力,***的耐磨及摩擦性能、极高的蠕变强度、***的尺寸稳定性,杰出抗紫外线性能,***的耐高能辐射性能,固有的低可燃性,而在燃烧时产烟少。
美国苏威PEEK DBF1G31-BK材料特性:
DBF1G31-BK在航天、***、制药和食品加工业得到非常普遍的应用,如***上的气体分析仪结构件、热交换器刮片;因其优越的摩擦性能,在摩擦应用领域成为理想材料,如套筒轴承、滑动轴承、阀门座、密封圈、泵耐磨环等。
美国苏威PEEK DBF1G31-BK详解:
section is devoted to showing that these improvements make the containment in Proposition 3 strict in some cases. As the reader will see, the former difference is entirely resp***ible for the gap that we expose between the two bounds in our examples. We hasten to add, however, that the latter improvement is not an empty one in that Anantharam and Borkar [27] h***e shown that there can exist a (U, Z, T) in ΓBT with the property that there does not exist a W such that (U, Z, W, T) is in Γ . It is interesting to note that the Anantharam-Borkar example arose independently of this work in the context of distributed stochastic control.
We will exhibit three examples for which RDBT strictly contains RDo . The first is rather contrived and can be solved from first principles. It is included to illustrate the difference between the two bounds.
Toy Example Let Y11, Y12, Y21 , and Y22 be independent and identically distributed (i.i.d.) random variables,