现在GT25振动器的多用炉基本不用水性淬火介质。又如,工件上GT25振动器有较深的内孔、工件为大薄片状、以及形状复杂时,水淬后往往出现严重的硬度不均和较大的GT25振动器淬火畸变。同样的情况,在油中淬火时,则不会发生这样严重的问题。引起这些问题的原因是,水的冷却特性对水温变化太敏感。图1a是温度对自来水冷却特性的影响曲线[1]。容易推知,当单个工件在GT25振动器自来水中淬火时,由于形状或所处位置的原因,工件不同部位的表面接触的水温是不同的:工件上的凹进部分接触的水温高,而突出部分接触的水温则相对要低些。位于下面部分接触的水温较低,上面部位接触的水温较高。当多个GT25振动器工件以比较密集装挂的方式同时入水时,位于外面的工件接触的水温较低,而内部的工件接触的水温则较高。再加上同一工件朝外的面接触的水温较低,朝里的面接触水温则较高。不同的水温对应不同的冷却特性,其结果就引起了上述种种问题。图1b为温度对油的冷却特性的影响曲线。由图1的对比,可以看出GT25振动器水温对冷却特性的影响是很大的。我们把冷却特性对液温变化太敏感列为自来水的第二大缺点。有机聚合物水溶液,比如PAG淬火液、聚乙烯醇水溶液等也都有相同的缺点。图1c为不同液温的10%***钠水溶液的冷却特性曲线。由图1c可见,10%的无机盐(或碱)溶入水中,可以大大减小冷却特性对水温的敏***程度。与单纯自来水相比,直到水温达到70℃,其冷却特性对GT25振动器液温的敏感程度还是比较小的。表1为自来水、PAG淬火液和淬火油等液体介质的上述两项特性。上述对液温的敏***,主要是通过液温对冷却过程中蒸汽膜阶段长短的影响,而***终反映在同一工件的不同部位之间、不同工件之间、以及不同批次淬火工件之间出现大的硬度差异和严重的淬火中畸变上。