济宁润华环生物制气保秸秆气化成套设备节能设备生物制气工艺流程说明:含水分小于20%秸秆(生物质可燃物)、通过喂料机送入下吸气气化炉,秸秆再炉内进行干燥、燃烧、裂解、氧化还原产出生物质可燃气体,气体产出后在尾部风机作用下进入旋风除尘器去除气体中灰分,去除灰分后的气体流进高温裂***分解转化焦油,焦油在高温800-900度时通过裂解介质作用分解转化率达97.8以上。裂解后的气体要进行冷却、脉冲除尘器在风机作用下经防火止回器进入储气柜,恒压气体经止回阀进入燃烧器,燃烧产生热能供工业生产使用。
下吸式秸秆气化炉简介
下吸气生物质气化炉具有结构简单,易操作,产出气体焦油含量低的优点。生物质气化过程是一个复杂的热化学反应的过程。吹入的空气与物料混合燃烧,这一区域称为氧化区,温度约为900-1200℃,产生的热量用于支持热解区裂解反应和还原区还原反应的进行;氧化区的上部为热解区温度约为300-700℃,在这一区域生物质中的挥发分(裂解气、焦油以及水分)被分离出来;热解区的上部为干燥区,秸秆在这一区域被预热干燥;氧化区的下部为还原区,氧化区产生的CO2、炭和水蒸气在这一区域进行还原反应,同时残余的焦油在此区域发生裂解反应,产生CO和H2为主的产出气(生物质气体)这一区域的温度700-900℃;来自热解区富含焦油的气体需经过高温氧化区和炽热焦炭为主的还原区,其中的焦油在高温下被裂解,从而使产出气的焦油大为减少。
作为气化剂的空气从炉体侧部空气喷嘴吹入,产出气的流动方向与物料是一至,故下吸气气化炉也称为顺流气化炉。
工艺流程
生物质(秸秆)
控制柜
喂料机
厌氧气化炉 空气
除尘器
水蒸气
裂解气
冷却泵 冷却水池
木酸醋 冷却器
除尘器
引风机
式火口 点火排烟气出口
止回器
储气柜
恒压供气
止回阀
燃烧器
工业锅炉
工艺流程说明:含水分小于20%秸秆(生物质可燃物)、通过喂料机送入下吸气气化炉,秸秆再炉内进行干燥、燃烧、裂解、氧化还原产出生物质可燃气体,气体产出后在尾部风机作用下进入旋风除尘器去除气体中灰分,去除灰分后的气体流进高温裂***分解转化焦油,焦油在高温800-900度时通过裂解介质作用分解转化率达97.8以上。裂解后的气体要进行冷却、脉冲除尘器在风机作用下经防火止回器进入储气柜,恒压气体经止回阀进入燃烧器,燃烧产生热能供工业生产使用。
下吸气气化炉简介
下吸气生物质气化炉具有结构简单,易操作,产出气体焦油含量低的优点。生物质气化过程是一个复杂的热化学反应的过程。吹入的空气与物料混合燃烧,这一区域称为氧化区,温度约为900-1200℃,产生的热量用于支持热解区裂解反应和还原区还原反应的进行;氧化区的上部为热解区温度约为300-700℃,在这一区域生物质中的挥发分(裂解气、焦油以及水分)被分离出来;热解区的上部为干燥区,秸秆在这一区域被预热干燥;氧化区的下部为还原区,氧化区产生的CO2、炭和水蒸气在这一区域进行还原反应,同时残余的焦油在此区域发生裂解反应,产生CO和H2为主的产出气(生物质气体)这一区域的温度700-900℃;来自热解区富含焦油的气体需经过高温氧化区和炽热焦炭为主的还原区,其中的焦油在高温下被裂解,从而使产出气的焦油大为减少。
作为气化剂的空气从炉体侧部空气喷嘴吹入,产出气的流动方向与物料是一至,故下吸气气化炉也称为顺流气化炉。
秸秆气化焦油裂解技术
一、秸秆焦油的特性
秸秆(即生物质)气化的目标是得到尽可能多的可燃气体产物,但在气化中,焦炭和焦油都是不可避免的副产物。其中由于焦油在高温时呈气态,与可燃气体完全混合,而在低温时(一般低于200℃)凝结为液态,所以其分离和处理更为困难,特别对于燃气需要降温利用的情况(如燃气用于家庭、内燃机发电、锅炉燃烧时),问题更加突出。
焦油的存在对气化有多方面的不利影响,首先它降低了气化效率,气化中焦油产物的能量一般占总能量的5~15%,这部分能量是在低温时难以与可燃气体一道被利用,大部分被浪费,其次焦油在低温时凝结为液态,容易和水、焦炭等结合在一起,堵送气管道,使气化设备运行发生困难。另外,凝结为细小液滴的焦油比气体难以燃烬,在燃烧时容易产生炭黑等颗粒。对燃气利用设备,如内燃机、燃气轮机、燃烧器等损害相当严重,这就大大降低了气化燃气的利用价值。所以针对气化过程产生的焦油,采取办法把它转化为可燃气,既提高气化效率,又降低燃气中焦油的含量,提高可燃气体的利用价值,对发展和推广秸秆气化发电、民用、工业使用技术具有决定性的意义。
二、焦油的特点
在秸秆热转换中,焦油的数量主要决定于转换温度和气相停留时间,与加热速率也密切相关。对一般秸秆而言,在500℃左右时焦油产物***多,高于或低于这一温度焦油都相应减少。而在同一温度下,气相停留时间越长,意味着焦油裂解越充分。所以随着气相停留时间的增加,焦油产量会相应地减少(见图2)。焦油的成份非常复杂,可以分析到的成份有100多种,另外还有很多成份难以确定,而主要成份不少于20种,大部分是苯的衍生物及多环芳烃,其中含量大于5%的大约有7种,它们是:benzene(苯),naphthalene(萘),toluene(***),xylene(二***),styrene(***),phernol(酚)和indene(茚),其它成份含量一般都小于5%,而且在高温下很多成份会被分解。所以随着温度的升高,焦油含量中成份的数量越来越少,因而在不同条件下(温度、停留时间、加热速率)焦油的数量和各种成份的含量都是变化的,任何分析结果只能针对于特定条件言。
根据这些特点,我们应在气化过程中尽可能提高温度和气相停留时间,减少焦油的产量和种类,以达到在气化时控制焦油的产生,减少气体净化的难度.
三、秸秆焦油催化裂解
焦油催化裂解的原理尽管在秸秆气化过程中采取各种措施控制焦油的产生,但实际上气体中焦油的含量仍远远超出应用允许的程度,所以对气体中的焦油进行处理,是有效利用燃气必不可少的过程,其中焦油的催化裂解是***有效、******的办法。以往简单的水洗或过滤等办法,只是把焦油从气体中分离出来,然后作为废物排放,既浪费了焦油本身的能量,又会产生大量的污染。而焦油热裂解却可把焦油分解为***性气体,与可燃气一起被利用。所以它既减少了焦油含量,又利用了焦油中的能量。但热裂解需要很高的温度(1000℃~1200℃),所以实现较困难。催化裂解利用催化剂的作用,把焦油裂解的温度大大降低(约750℃~℃900),并提高裂解的效率,使焦油在很短时间内裂解率达99%以上。
化学式描述裂解的转化过程。但不管何种成份,裂解的***终产物与气化气体的成份相似,所以焦油裂解对气化气体质量没有明显影响,只是数量有所增加。对大部分焦油成份来说,水蒸汽在裂解过程中有关键的作用,因为它能和某些焦油成份发生反应,生成CO和H2等气体,既减少炭黑的产生,又提高可燃气的产量。