







离心风机的传动方式因使用场合不同而不同,离心风机的传动方式也不同,如图1.2所示。当离心风机叶轮的转速与电机相同时,大型风机可以通过联轴器将风机叶轮与电机直接联接,称为D传动。这种传动方式的优点是可以使风机结构紧凑,减少机身。当风机是小型机器时,叶轮可直接与电机轴连接,称为A型传动。这种传动方式可以有效地减小风机的体积,使风机结构更加紧凑。当风机转速与电机转速不同时,可采用皮带轮变速传动方式。离心风机根据具体形式可分为B、C、E、F四种,通常叶轮安装在主轴端部。这种结构叫做悬臂。其优点是易于拆卸。对于大型单吸和双吸离心风机,叶轮通常放置在两个轴承的中间。这种结构称为双支承式。其优点是风扇运转平稳。流量损失会降低离心风机的实际压力,泄漏损失会降低风机的流量,叶轮损失和机械损失会导致风机附加功率的增加,从而降低风机的效率。流量损失气体流经离心风机的进气室、叶轮、蜗壳和出口扩压器。由于气体通道的粘性和形状不同,在整个流动过程中存在摩擦损失和涡流损失(边界层分离、二次流、尾流损失等)。目前,在现有的离心风机损失模型中,不同部件的各种损失(如进气室损失、叶轮进口气流从轴向到径向的损失、叶轮通道损失、蜗壳损失、变工况下叶片进口冲击损失)是***计算的。
离心风机原型机的短叶片是在长叶片的基础上在直径为320mm的圆弧方位截断,改善计划一的短叶片长度进行了多种长度的挑选,并经过数值计算得到醉优的短叶片长度是在长叶片的基础上在直径为259mm的圆弧方位打断。改善完成后按照离心风机原型机的数值计算方法,对改善后的风机进行数值计算,能够看出通过向内延伸斜槽式离心风机的短叶片,将风机的所需扭矩由4.53N.m降低为4.33N.m,使风机的功率进步了2.3%。能够看出在延伸短叶片后,改善计划一的风机短叶片吸力面的两个旋涡消失,叶片邻近的别离区显着的减小,但改善计划一的长叶片吸力面依然存在较大的别离区,因此风机的全体功率进步并不太显着。
增大离心风机叶轮的旋转直径改善计划一使斜槽式离心风机的功率进步2.3%,但风机的全压值根本坚持不变,这样的改善计划并不能满足对风机全压值5000Pa的要求。因此本文依据风机规划的相似原理,即在风机满足类似条件的情况下,风机的全压值与风机的转速的平方和全压的平方呈正比,依据风机的类似规划原理,在满足类似规划条件下,相应的增大风机叶轮的旋转直径,能够有用的进步风机的全压值。
某车间离心风机至2016年止已运行近8 年,振动一直偏大,已困扰生产多年。即使是更新了叶轮总成,并在联轴器对中性符合允差的情况下,运行时前后两轴承位壳振实测振动速度有效值分别达到了3.0 mm/s 和3.6 mm/s 左右,这是属于“可容忍”的范围,但不宜长期运行工作。经我设备人员分析,认为振动大的原因有:一是混凝土基础过于单薄,重量不足,且运行时基础周围地板有明显的颤动;二是预埋地脚螺栓有松动迹象。经上级研究,决定趁当年大修时间充足的机会,对上述存在问题整改,破除旧基础后,按本文前述处理措施重新设计、施工新的混凝土基础和预埋地脚螺栓。
开机正常生产后,该离心风机轴承位壳振实测振动速度有效值分别降到了0.45 mm/s 和0.52 mm/s,属“良好”级别。安装精度不达标及其检查处理措施安装精度主要是指风机轴与驱动电机轴的同心度,即对中性。离心式风机联轴器的同心度要求很高。如果联轴器没有找正,或是找正达不到要求,引起离心风机振动将不可避免。应注意的是,即使原来同心度已经符合要求了,但是风机运行一段时间后,由于各种原因,同心度会也会发生变化,所以应注意定期检查同心度,如发现同心度超过允许偏差了,要立即重新找正。因此,当风机发生异常的振动故障时,检查联轴器的对中情况是必不可少的。
